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CHAPTER 1

Introduction and Basic Theory

In this introductory chapter, we provide some preliminary background which we will use

later in establishing various results for general elliptic partial differential equations (PDEs).

The material found within these notes aims to compile the fundamental theory for second-

order elliptic PDEs and serves as complementary notes to many well-known references on

the subject, c.f., [6] [7, O 13, [16]. Several recommended resources on basic background that

supplement these notes and the aforementioned references are the textbooks [3] [10] 28].
We will mainly focus on the Dirichlet problem,

Lu=f inU,
{ u=0 on U, (1.1)

where U is a bounded open subset of R” with boundary OU, and u : R" — R is the unknown
quantity. For this problem, f : U +— R is given, and L is a second-order differential operator
having either the form

ZD x)Dyu) +Zb’ )Diu + c(x)u, (1.2)

i,j=1
or else
Za D,]u—l—Zbl )Diu + c(z)u, (1.3)
i,j=1
for given coefficient functions a*”, b*, and ¢ (i,7 = 1,2,...,n) which are assumed to be

measurable in U, the closure of the set U. However, in this chapter, we take these coefficients
to be continuous in U. If L takes the form (|1.2)), then it is said to be in divergence form,
and if it takes the form ([1.3)), then it is said to be in non-divergence form.
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Remark 1.1. Here, D;; = D;D;. In practice, 1s natural for energy methods while
s more appropriate for the mazimum principles. In addition, the Dirichlet problem
can be extended to systems, i.e., Lu; = f; in U, and u; =0 on OU, fori=1,2,...,L € Z*.
A simple example of a second-order differential operator is the Laplacian, L == —A, where

a =0, 0" =c=0 (4,7 =1,2...,n) in either (1.2) or (L.3).

Remark 1.2. The elliptic theory for equations in divergence form was developed first as
we can easily exploit the distributional framework and energy methods for weak solutions in
Sobolev spaces, for example. Much of our focus in these notes will be on establishing the
basic elliptic PDE theory for equations in divergence form.

Remark 1.3. Extending this theory to elliptic equations in non-divergence form has certain
obstacles, and its treatment requires a somewhat different approach. We shall study one
way of examining such equations using another concept of a weak solution called a viscosity
solution, which are defined with the help of maximum and comparison principles. We shall
give a brief introduction to fully nonlinear elliptic equations in non-divergence form and their
viscosity solutions in Chapter [/

Unless stated otherwise, we shall always assume that L is uniformly elliptic, i.e., there
exist A, A > 0 such that

MEP <> a9 (2)6¢ < Al¢f aex €U, forall { € R™.
ij=1
Moreover, u € H}(U) is said to be a weak solution of (1.1)) in divergence form if
Blu, v] = (f, v), for allv € Hy(U),

where B[, -] is the associated bilinear form,

Blu, v] := / Z a”’ DyuDjv + Z b (2) Dywv + c(z)uv d.
U

ij=1 i=1

1.1 Harmonic Functions

First we shall introduce the mean-value property, which provides the key ingredient in es-
tablishing many important properties for harmonic functions.

1.1.1 Mean Value Properties
Definition 1.1. For u € C(U) we define



(i) u satisfies the first mean value property (in U ) if

1

") = BB, o

u(y)do, for any B,(z) C U;

(i1) u satisfies the second mean value property if

o1/, y)dy for any B.(x) C U.

Remark 1.4. These two definitions are equivalent. To see this, observe that if we rewrite
(i) as

way = — | u(y)do,
9B, (z)

where w, denotes the surface area of the (n — 1)-dimensional unit sphere S*™, i.e., w, =
na(n) = n|B1(0)] where B1(0) C R™ is the n-dimensional unit ball centered at the origin,
then integrate with respect to r, we get

1
/ / y)do,ds = — u(y) dy.
OBS(Z‘ Wn Br(z)

If we rewrite (ii) as

u(z)r" = i / / y) doyds
Wn BT(J:) 0Bs(x

then differentiate with respect to r, we obtain (i).
Remark 1.5. The mean value properties can easily be expressed in the following ways.
(1) uw e C(U) satisfies the first mean value property if
1
u(z) = —/ u(x +rw)do, for any B.(z) C U;
8B4 (0)
(i) uw € C(U) satisfies the second mean value property if

n

u(zr) = —/ w(x +ry)dy  for any B.(x) C U,
Wn J B1(0)

Theorem 1.1. If u € C*(U) is harmonic, then u satisfies the mean value property.



Proof. Set
1 1

o(r y)do, = — u(z 4+ rw) do,,.
" =GB Jos " T G Sy T
Then
&' (r) ! / Du(z + rw) -wd ! Du(y) Y14
= — ~wdo, = . o
8B1(0) |08, (x)] OB, (z) T Y
1 ou ron ou
wnr”—l /8Br(x) ay (y) Uy nwnT" /GBT(J:) ay (y) Uy
T 1
= — Au(y) dy = 0.
n|B.(z)| /B, @)

Hence, ¢ is constant. Therefore, by the Lebesgue differentiation theorem (see Theorem [3.4)),

o(r) = lim ¢(t) = lim ————— ! u(y) do, = u(x).

50 1—0 [0B,(z)| OBy (x)
]

The next theorem is the converse of the previous result. Namely, functions satisfying the
mean value property are harmonic.

Theorem 1.2. If u € C*(U) satisfies the mean value property, then u is harmonic.

Proof. 1t Au # 0, we may assume without loss of generality that there exists a ball B,.(z) C U
for which Au > 0 within B,.(z) However, as in the previous computation,

1

1y —
0= =B e

Au(y) dy > 0,

which is a contradiction. O
The next theorem is the maximum principle for harmonic functions.

Theorem 1.3 (Strong maximum principle for harmonic functions). Suppose u € C*(U) N
C(U) is harmonic within U.
(i) Then
max u = max u.

U ou

(i1) In addition, if U is connected and there exists a point xy € U such that

u(zg) = mex u(z),

then u s constant in U.



Proof. Suppose that there is such a point xy € U with u(zg) = M := maxgu. Then for

0 < r < dist(xg,0U), the mean value property asserts
1

[Bo(20)] /1, (ao)

Hence, equality holds only if w = M in B,(xg). That is, the set {z € U |u(x) = M} is both
open and relatively closed in U. Therefore, this set must equal U since U is connected. This
proves assertion (ii), from which (i) follows. O

M = u(zo) = u(y) dy < M.

1.1.2 Sub-harmonic and Super-harmonic Functions

Interestingly, mean-value properties and maximum principles hold for sub-harmonic and
super-harmonic functions. Let us state such results including some important applications.
We say a function v € C*(U) is sub-harmonic in U if —Au < 0 in U and super-harmonic if

—Au>0inU.
Lemma 1.1 (Mean Value Inequality). Let x € B, (x) C U for some ry > 0.
(1) If —Au > 0 within B,,(z), then for any r € (0,79),

1
\33( )N JoB, @)

It follows that if x¢ is a minimum point of u in U, then

u(y) doy,.

—Au(xg) < 0.

(i1) If —Au < 0 within B,,(z), then for any r € (0,719),

1
[0B,(2)] Jop,

It follows that if x¢ is a mazimum point of u in U, then

u(z) < u(y) doy.

—Au(zg) > 0.
Proof. As in the proof of Theorem (1.1} we see

/ Au(x)dr = r"t / Ou —(z + rw) do,,. (1.4)
r(x) 0

Bl 0) 87“

We only prove (i) since the proof of (ii) follows from similar arguments. From (1.4)), we see
that if —Awu > 0, then
0

T +rw)do, < 0.
87" 9B (0) ( )



Integrating this from 0 to r yields
/ u(z + rw) do, — u(x)|0B1(0)] < 0,
9B1(0)

in which the desired inequality follows immediately. To prove the second statement in (i),
we proceed by contradiction. On the contrary, suppose that xy is a minimum point of u in
U and assume that —Au(zg) > 0. By the continuity of u, we can find a § > 0 for which
—Au > 0 within Bs(zo). But the mean value inequality implies that

1
w(xg) > = u(y) do, for any r € (0,9).
0B, (%0)] JoB, (x0) !
This contradicts with the assumption that zy is a minimum of . O

A nice application of the mean value inequalities is the weak maximum principle for
the Laplacian. Analogous results for more general uniformly elliptic equations are provided
below. In addition, unlike the strong maximum principles for harmonic functions provided
earlier, we do not make any connectedness assumption on the domain U.

Theorem 1.4 (Weak Maximum Principle for the Laplacian). Suppose that v € C*(U) N
(o).

(i) If
—Au >0 within U,

then
minu > min u.
U oUu
(i) If
—Au <0 within U,
then

max u < maxu.
U ou

Proof. We only prove (i) since (ii) follows from similar arguments. First, we assume u is
strictly super-harmonic: —Aw > 0 within U. Let xy be a minimum of » in U, but the mean
value inequality implies —Awu(z) < 0, which is a contradiction. Thus, ming v > mingy u.
Now, suppose u is super-harmonic: —Awu > 0 within U and set u, = u — €|z|?>. Obviously, u,.
is strictly super-harmonic, i.e.,

—Au, = —Au + 2en > 0.

It follows that ming u. > mingy u. and the desired result follows after sending e — 0. [
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An application of the weak maximum principle is the following interior gradient estimate
for harmonic functions.

Corollary 1.1 (Bernstein). Suppose u is harmonic in U and let V- CC U. Then there holds

sup [Du| < C'sup [ul,
|4 oUu

where C'= C(n, V) is a positive constant. In particular, for any o € (0,1) there holds

lu(@) —u(y)| < Clz —y[*suplu| for any x,y € V.
oUu

Proof. A direct calculation shows

A(|Dul?) =2 En:(Diju)2 +2 Xn: DyuD;(Au) = 2 En:(Dijuf > 0. (1.5)

i,j=1 i,j=1

That is, |Du|? is a sub-harmonic function in U. Then, for any test function ¢ € C}(U), a
basic identity yields

A(p|Dul?) = (Ap)|Dul* + 2D - D(|Dul*) + ¢A(| Dul?).

Hence, combining this with (|1.5)) gives us

A(p|Dul?) = (Ap)|Dul* + 4 " DipDjuDiju+2p Y (Diju)’.

i,j=1 i,j=1

We establish the gradient estimates using a cutoff function. By taking ¢ = n? for some
n € CYHU) with n = 1 within V, we obtain by Holder’s inequality,

A(n?|Dul?) = 2nAn|Dul? + 2|Dn|?| Du|? + 8n Z DinDjuD;ju + 2n? Z(Dijuf
ij=1 ij=1

C
> (2nAn = 6|Dnl*)[ Duf* > =C|Duf* = = A(w?),

where C' is a positive constant depending only on 7. In the last line, we used the fact that
A(u?) = 2|Dul* + 2uAu = 2|Dul? since u is harmonic. By choosing a > C/2 large enough,
we obtain

A(n?| Dul? + au®) > 0.

By part (ii) of the weak maximum principle, we obtain

sup | Du|* < sup {nQ\Dulz + a|u|2} < sup {nQ\DuP + a|u|2} = asup |ul*
v v o ou

11



Theorem 1.5 (Removable Discontinuity). Let u be a harmonic function in Br(0)\{0} that
satisfies u(x) = o(|z|*™) as |z| — 0 if n > 3 or u(z) = o(log|z|) as |z|] — 0 if n = 2.
Then w can be defined at 0 so that it is smooth and harmonic in Br(0).

Proof. For simplicity, let us only consider the case n > 3, since the case when n = 2 is
treated exactly the same except that the fundamental solution is of the logarithmic type.
Assume u is continuous in the punctured disk Br(0)\{0} and let v solve

Av =0 in BR<O>,
v=u on 0Bg(0).

Moreover, assume that limj, o u(z)z[*? = 0, ie., any possible singularity of u at the
origin grows no faster than the fundamental solution |z|* ™ (of course, this property is
trivial whenever u is bounded).

It suffices to prove that u = v in Bg(0)\{0}. Set w = v —u in Br(0)\{0}, 0 < r < R,
and M, := maxyg, (o) |w|. Clearly,

Note that both w and m% are harmonic in Bg(0)\B,(0). Hence, the weak maximum
principle implies

n—2
w(z)| < MT|T|—2 for any = € Br(0)\B,(0).
x|
Then for each fixed x # 0,
n—2
()| < s [u] ! maxon, U na g oy
9Br(0) |z |2 |z |2

TV
|z|2="0(1) as r —0

where we used the estimate

M, = max |v —u| < Jnax |v| + max |u| < max lv| + Jnax lu| < nax |u| + max |u].
dBr(O) r(o) dBr(O) 8BR( (0) R(O 0By (0)

Hence, w = 0 in Bg(0)\{0}. O

1.1.3 Further Properties of Harmonic Functions

Theorem 1.6 (Regularity). If u € C(U) satisfies the mean value property in U, then u €
Cc>(U).

Proof. Define n € C(R™) to be the standard mollifier

1 .
CeXp <|,§C|2——1)’ if ’fE‘ < 1,
0, if |x| > 1,

n(z) ==

12



where C' > 0 is chosen so that |[n||pi sy = 1, and set ue == 1. xu in U. = {z €
U |dist(x,0U) > €}. Then u, € C*(U). Now, the mean-value property and simple calcula-
tions imply

w)= [ o=ty = » n(‘x‘y‘) u(y) dy

ETL

:Eln 0}(%) (/w u(y )day> dr——/ ) S tu(e) dr

— u(z) / | = u(e).

Thus, u = u in U, and so u € C*(U,) for each € > 0. O

Remark 1.6. We mention some other regularizing properties of the mollifier introduced
above. If u € C(U), then ue — u uniformly on compact subsets of U as e — 0. Moreover,
if 1 <p < oo and the function w € L} _(U), then uc — u in L} (U).

loc

Theorem 1.7 (Pointwise Estimates for Derivatives). Suppose u is harmonic in U. Then

o C%
|D%u(x)| < rn+k||ul|L1(Br<x))» (1.6)

for each ball B,(x) C U and each multi-index o of order |a| = k. Particularly,

2n+1k k,  k+1
Co= " o = TR

Wn Wn

(k=1,2,...). (1.7)

Proof. We proceed by induction in which the case when k = 0 is clear. For k = 1, we note
that derivatives of harmonic functions are also harmonic. Consequently,

n2"

wpr™

[, (2 iz, (y) dy| = |

n
/ w(y)vidoy| < 22 ullpeos, )
8B,.5(z) r
(1.8)

‘IBr/z 2)| /B, )

If y € 0B, /2(x), then B, 5(y) C B,(x) C U, and so
n (2\"
<2 (2 )
u(y)] < o, (T) [ull (B, @)

where we used the estimate for the previous case £ = 0. Inserting this into estimate
completes the verification for the case £ = 1. Now assume that & > 2 and the estimates
— hold for all balls in U and for each multi-index of order less than or equal to
k —1. Fix B.(r) C U and let a be a multi-index with |a| = k. Then D*u = (D"u),, for
some i € {1,2,...,n}, |8 = k — 1. Using similar calculations as before, we obtain

o nk
|Du(z)| < THD’BUHLwaBT/k(x))-

13



If y € B,i(x), then B%T(y) C B,(z) C U. Thus, estimates ({1.6)—(1.7) imply

n(2n+1n(k _ 1))k:—1
IDulw)] £ =

ull21(B, (2))-

Combining the last two estimates imply the desired estimate

n(2"tink)* Ck

|D%u(z)| < o ull 215, @) = 7nn%HuHLl(Br(ac))-

]

Theorem 1.8 (Liouville). Suppose u : R® — R is harmonic and bounded. Then u is
constant.

Proof. Fix x € R™, r > 0, and apply Theorem on B,.(z) to get

|Du(z)| < g NullLr (s, ) < g |ul| Lo (B, (2)) < P 0 as r — oo.

Hence, Du = 0, and so u is constant. O

Theorem 1.9 (Harnack’s Inequality). For each connected open set V- CC U, there exists a
positive constant C' = C(V'), depending only on V', such that

supu < Cinfu
v 14

for all non-negative harmonic functions v in U. In particular,
C7u(y) < u(x) < Culy)
forallx,y € V.

Remark 1.7. Harnack’s inequality asserts that non-negative harmonic functions within V'
are in a sense all comparable and shows that the oscillation of such functions can be con-
trolled. Basically, a harmonic function cannot be small (large, respectively) at some point in
V' unless it is small (large,respectively) on all other points in V.

Proof. Let r := 1dist(V,0U) and choose z,y € V with |z —y| < r. Then

1 n
u(x) = —— u(z)dz > / w(z)dz
(@) | Bay ()] Bar(x) ) W 2" Br(y) 2
1 1 1
S —— u(z) dz = —u(y).
2" ’Br(y)| B (y) 2n

Hence, su(y) < u(z) < 2"u(y) if 2,y € V with |z — y| < r. Since V' is connected and its
closure is compact, we can cover V by a chain of finitely many balls {B;}Y |, each of which
has radius r/2 and B; N B;_1 # 0 for i = 2,3,... N. Then

1

for all z,y € V. O
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The following provides an another equivalent characterization of harmonic functions, and
it gives a proper motivation for the notion of viscosity solutions to fully nonlinear elliptic
equations (see Chapter [4)).

Theorem 1.10. Let U be a open bounded domain in R™. Then, u is a harmonic function
n U if and only if u is continuous and satisfies the following two conditions.

(i) If u — ¢ has a local mazimum at xo € U and ¢ € C*(U), then —Ap(xy) < 0.
(ii) If uw — ¢ has a local minimum at xo € U and ¢ € C*(U), then —Ap(xq) > 0.

Proof. If uw is harmonic in U, then u is clearly continuous and showing it satisfies the two
conditions is obvious. For instance, if u — ¢ has a local maximum at xq € U, then

—Ap(r0) = Alu(zo) — ¢(w0)) < 0.

The second condition is verified in a similar manner. Now suppose that the two conditions
are satisfied. By regularity properties of harmonic functions as indicated earlier, we may
assume that u is C%. Then, it is clear that if u € C*(U), then we can set ¢ = u in the two
conditions and conclude that u = ¢ is harmonic in U. O]

1.1.4 Energy and Comparison Methods for Harmonic Functions

The following are simple approaches for harmonic functions that we will make use of in the
later chapters. We begin with Cacciopolli’s inequality, which is sometimes called the reversed
Poincaré inequality.

Lemma 1.2 (Cacciopolli’s Inequality). Suppose u € C'(By) satisfies
/ a’(z)DiuDjpdr =0 and ¢ € Cy(By).
B1
Then for any function n € C}(By), we have

/ n°| Dul? deC’/ | Dn|*u® dz,
B1

B1

where C' = C(\, ) is a positive constant.

Proof. For any n € C}(By) set ¢ = n*u. From the definition of a weak solution, we have

)\/ n*|Du|* dx < A/ nlu||Dn||Du| dz.
Bl Bl
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Then by Holder’s inequality,

)\/ n?|Dul* dx gA/ n|u||Dn||Du| dz
Bl Bl

} }
<A (/ n?| Dul? da:) ( | Dn|*u? dx)
Bl Bl

and the result follows immediately. O]

Corollary 1.2. Let u be as in Lemma|1.2. Then for any 0 <r < R <1, there holds

C
Du2dm<—/ ul? dr,
/T| | T (R=1)? BR| |

where C' = C(\,A).

Proof. Choose 1 such that n =1 on B,, n = 0 outside Bg and |Dn| < 2(R—r)~! then apply
Lemma [T.2 O

Corollary 1.3. Let u be as in Lemmall.3. Then for any 0 < R < 1, there hold

/ u? dx < Q/ w?dx, and / | Du|? dw < 9/ | Dul? du,
Bry2 Br Bpr/2 Br

where 0 = 0(n, A\, A) € (0,1).
Proof. Take n € C§(Bg) with n = 1 on Bgs and |Dn| < 2R™*. Then by Lemma and

since Dn = 0 in Bg/z, we have

C
/ |D(nu)|?* dz < / | Dn*u® + n?|Dul? do < C'/ | Dn|?u? do < -3 u? dx.
Br Br Bgr R BR\BR/Q

From this estimate and Poincaré’s inequality, we obtain

/ u?dr < / (nu)? dw < CnR2/ |D(nu)|? do < C’/ u® dx.
Br/a Br Br Br\Bpg/2

This further implies

(C’+1)/ ugdeC/ u? d,
Br/2 Br

which completes the proof of the first estimate. The proof of the second estimate follows
similar arguments. O]
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Remark 1.8. Interestingly, Corollary[1.3 implies that every harmonic function in R™ with
finite L*-norm are identically zero and every harmonic function in R™ with finite Dirichlet
integral is constant. Moreover, iterating the estimates in Corollary[1.3 leads to the following
estimates. Let u be as in Lemma([I.3, then for any 0 < p <r <1 there hold

/ u?dr < C(B)u/ uw?dr, and / |Du|2dx§0<£>#/ | Dul? da,
B, r B, B, r B

for some positive constant yu = p(n, A\, A). Later on we prove that we can take p € (n—2,n).

Lemma 1.3 (Basic Estimates for Harmonic Functions). Suppose {a"} is a constant positive
definite matriz satisfying the uniformly elliptic condition,

NeP < a” ()65 < Algf® for any € € R" (1.9)

for some 0 < A < A. Suppose u € C(By) satisfies
/ a”’(z)DiuDjp =0 for any ¢ € Cy(By).
B1

Then for any 0 < p <r, there hold

/BP 2 dz < C (g)"/ luf? dz,

B,
9 p n+2 9
/ lu — (u)o,|*de < C (—) / lu — (u)o,|” dr,
B, r B,

where C'= C(\,A).

Proof. By dilation we may assume that » = 1. We restrict our attention to the range
p € (0,1/2], since the estimates are trivial by a change of variables when p € (1/2,1].
Claim: There holds

) S C(\A) lu|? dz.

||U||%w(31/2) + ||Du||%oo(
B1

B2

From this we get the first result,

[l de <l < 0"l + 1D ) < " [ i
P 1
The claim also implies, using Poincaré’s inequality on balls (see Theorem |[A.24]), the inequal-

ity
J

o= (o, dx < g2 Dulld i, ) < ™ [ JuP di
/ B
1

P
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If w is a solution of (1.9)) then so is u — (u)o;. With u replaced by u — (u)o; in the above
inequality, we readily obtain the second result,

/ lu — (u)07p|2 do < cp”+2/ lu — (u)071|2 dx.
B, By

It only remains to prove the claim. If u is a solution of ([1.9)), then so are any derivatives
of u. By applying Corollary to the derivatives of u, we conclude that for any positive
integer k

[ull (s, ) < clk, A A)|ull2s,)-

By fixing k sufficiently large, the Sobolev embedding theorem implies that H*(B; /2) =
01<Bl/2). ThUS,

[ullcr (s, ) = Sup Ju(z)| + sup |Du(x)| < e(n)||ullans, .y < cln kA A)|ullzs,).
1/2 1/2

This completes the proof of the lemma. m

1.2 The Classical Maximum Principles

In this section, we consider an elliptic operator L in non-divergence form:

n

Lu = Z T) gy, + sz )y, + c()u,

i,7=1

where the coefficients a¥, b’, ¢ are continuous in some bounded open subset U C R"™ and the
uniform ellipticity condition holds. We now introduce the important maximum principles
for second-order uniformly elliptic equations. In the next chapter, we will instead focus on
uniformly elliptic operators in divergence form, which are more appropriate for the energy
and variational methods introduced in that chapter. In the later chapters, we will also look
at maximum principles for weak solutions when we study the weak Harnack inequality and
its connection with regularity properties of solutions to elliptic equations (see Theorem m
for example).

1.2.1 The Weak Maximum Principle
Theorem 1.11 (Weak Maximum Principle). Assume u € C?(U) NC(U) and c=0 in U.

(a) If Lu <0 in U, then maxu = max u.
U ouU

(b) If Lu > 0 in U, then minu = min u.
U ou

18



Proof. We prove assertion (a).
Step 1: First we assume Lu < 0 in U but there exists zy € U such that u(zy) = maxg u. Of
course, at this maximum point there hold

(1) Du(zo) = 0 and (i1) D*u(zo) < 0. (1.10)

Since A = (a(x)) is symmetric and positive definite, there is an orthogonal matrix O = (0;;)
such that
OAOT = diag(dy, ds, ..., d,), (1.11)

where OOT =T and d, > 0 for k =1,2,...,n. Write y = zo + O(z — 1) so that x — zg =
OT<y_x0>7

n n
= E Uy, O and Uy, = E Uy, Oki0Ocj (1,7 =1,2,...,m).
k=1 k=1

Hence, at the point xg,

n n n n
Z 0ty = Z Z 'y, 0pi00; = deuykyk <0, (1.12)
k=1

ij=1 i,j=1k,e=1

where in the last line the inequality is due to (1.10])(ii) and the fact that dy > 0 for k =

1,2,...,n, and the equality is due to (1.11]). From (1.10))(i) and (1.12)), at the point zy we

have
n

Lu=— Za uwl%—l—szuw >0,

3,j=1

and we arrive at a contradiction.

Step 2: Now we complete the proof for the case when Lu > 0 in U. Set
u(z) := u(x) + e, x €U,

where A > 0 will be specified below and € > 0. From the uniform ellipticity condition, there
holds a(z) > 6 for i = 1,2,...,n, x € U. Hence,

Luf = Lu + eL(e™) < e (=A% + Ab') < ee? (= A20 + ||b]|z=)) < 0 in U,

provided that A > 0 is chosen to be sufficiently large. Namely, we have Lu® > 0 in U and we
conclude maxg u¢ = maxgy u¢ from step 1. Let € — 0 to find maxg u = maxyy u.

Assertion (b) follows easily from (a) once we make the simple observation that —u is a
subsolution, i.e., L(—u) < 0 in U whenever u is a supersolution. []
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Remark 1.9. Mazimum principles for elliptic equations such as the previous weak maximum
principle typically come in two parts, e.g., parts (a) and (b). Although the term “mazimum”
principle should technically only refer to a statement like part (a), we shall adopt the standard
convention that something like part (b) will also be referred to as a “mazimum” principle.
Indeed, the direct relationship between (a) and (b) can be seen in the proof above. In view
of this, we sometimes only state and prove one part, e.q., part (a), of a maximum principle
but the reader should be aware a corresponding second part, e.g., part (b), will hold as well.

A simple extension of the weak maximum principle is the following.

Theorem 1.12 (Weak Maximum Principle for ¢ > 0). Assume u € C?>(U)NC(U) and c >0

inU, and f € CU). If Lu < f in U, then

maxu < Cmaxu™ + max | f],
U U U

where C' > 0 depends on n, A\, maxg |b'| and diam(S2).
Consequently, if u € C*(U) N C(U) is a solution of Lu = f in Q, then

[ull Loy < Cllulloovy + [1.f oo @y
where C'" > 0 depends on the same quantities as the previous constant C'.

Remark 1.10. The term “weak” from the above weak maximum principles come from their
obvious implication that “the mon-negative maximum can always be attained on the bound-
ary,” which is weaker than the statement “if u is non-constant, then it cannot attain its
non-negative maximum in the interior of the domain.” The latter statement is called the
strong mazimum principle, which is the next result we look at.

4

1.2.2 The Strong Maximum Principle

Just as we have for harmonic functions, the weak maximum principles may be strengthened
after some added conditions on U. In order to do this, we make use of Hopf’s Lemma.

Lemma 1.4 (Hopf’s Lemma). Assume u € C*(U)NC(U) and ¢ =0 in U. Suppose further
that Lu < 0 in U and there is a ball B contained in U with a point 2° € OU N OB such that

u(z) < u(z®) for all v € B. (1.13)
(a) Then
du, ,
a(x ) >0, (1.14)

where v is the outer unit normal to B at xg.

(b) If ¢ >0 in U, the same conclusion holds provided u(z") > 0.

20



Remark 1.11. (a) IfU = B and u € C*(B)NC(B U{z"}), we can actually prove that for
any outward direction v such that v -n(z°) > 0, we have that

0y _ o (0 _
lim inf uz?) —ul@” — tv)
t—0+ t

> 0.

So, under the stronger reqularity assumption that u € C*(B)NCY(BU{x"}), the directly
yields ((1.14)).

(b) An analogous result holds for when Lu < 0 in U but with the inequalities in the above
“interior ball” condition and the conclusions are switched to be in the opposite direction,
1.€.,

Ju
o
Proof of Hopf’s Lemma. Assume ¢ > 0 and also assume, without loss of generality, that
B = B,(0) for some r > 0.
Step 1: Define

(z%) < 0.

v(z) == e — e for © € B,(0)
for A > 0 to be specified below. Then, from the uniform ellipticity condition,
n n
Lv= — ;a”vzm + 21: b'v,, + cv
ij= i=

= ¢ e Z a’ (—=4Nxiz; + 2X\05) — e Nl Z b2Mz; + cle N — e
ij=1 i=1

< e M (=402 2] 4 20tr(A) + 2A|b||z| + ©),
for A = (a”) and b = (b"). Next consider the open annulus R = BY(0)\B,2(0) and so
Lv < e M (—oX2r2 4 2tr(A) + 2A|blr +¢) < 0 in R (1.15)

provided that A > 0 is fixed to be large enough.
Step 2: In view of (|1.13)), there exists a constant ¢ > 0 small for which

u(x%) > u(x) + ev(z) for x € OB, /5(0). (1.16)
In addition, notice since v = 0 on 9B,(0),

u(z%) > u(z) + ev(z) for x € 0B,(0). (1.17)

Step 3: From (1.15)), we see

L(u+ ev —u(z°)) < —cu(2") <0 in R,

21



and from (|1.16)) and (1.17) we have
U+ ev — u(xo) <0 on OR.

The weak maximum principle implies that u+ev—u(2®) < 0in R, but u(z°)+ev(2°)—u(z?) =
0, and so

0 0
== - >
81/($) E81/(93)_0
Consequently,
0 0
a—u(xo) > —ea—v(:co) = —EDU(CEO) 2% = 2 ere ™ > 0.
v v r
This completes the proof. O

Theorem 1.13 (Strong Maximum Principle). Assume u € C2(U)NC(U), c=0in U C R",
and U s connected, open and bounded.

(a) If Lu <0 in U and u attains its mazimum over U at an interior point, then u is constant
within U.

(b) If Lu > 0 in U and u attains its minimum over U at an interior point, then u is constant
within U.

Proof. We prove statement (a) only, since statement (b) follows similarly. Write M = maxg u
and take C' = {x € U|u(x) = M}. If C is empty or if u = M we are done. Otherwise, if
uZ M, set
V={xeUlu(r) < M}.

Choose a point y € V satisfying dist(y, C') < dist(y,0U) and let B denote the largest ball
with center y whose interior lies in V. Then there exists some point 2° € C with z° € 0B.
It is easy to check that V satisfies the interior ball condition at x°. Hence, by part (a) of
Hopf’s lemma, du/0v(x?) > 0. But this contradicts with the fact that Du(z°) = 0 since u
attains its maximum at 2° € U. O

If the coefficient ¢(x) is non-negative, then we have the following version of the strong
maximum principle. Its proof is the same as before but invokes statement (b) in Hopf’s
lemma.

Theorem 1.14 (Strong Maximum Principle for ¢ > 0). Assume u € C*(U)NC(U), ¢ >0
m U CR", and U is connected, open and bounded.

(a) If Lu <0 in U and u attains a non-negative mazimum over U at an interior point, then
u 15 constant within U.

(b) If Lu > 0 in U and u attains a non-positive minimum over U at an interior point, then
w 1s constant within U.
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A simple but useful consequence of the strong maximum principle is the following com-
parison principle.

Corollary 1.4. If U is connected, open and bounded, ¢ > 0 and suppose u € C*(U) N C(U)
satisfies
Lu<0 mU
{ u<0 ondU,

then either u =0 oru <0 in U.

Finally, we state a quantitative version of the maximum principle for second-order elliptic
equations called Harnack’s inequality. However, a more general version with proof shall be
offered in Chapter [3] There we will see the importance of Harnack’s inequality and how it
applies to obtaining several results on a weaker notion of solution, called weak or distribu-
tional solutions, for elliptic equations. This includes results on their regularity properties,
Liouville type theorems, and even a version of the strong maximum principle adapted to
weak solutions.

Theorem 1.15. Assume u is a non-negative C? solution of
Lu=0 m U,
and suppose V. CC U 1s connected. Then there exists a constant C such that

supu < C'inf u.
4 \%
The constant C' depends only on V' and the coefficients of L.

1.2.3 Some Refinements and Extensions

The earlier comparison principle of Corollary can be generalized by removing the non-
negative assumption ¢ > 0 in U.

Theorem 1.16. IfU is connected, open and bounded and suppose u € C*(U)NC(U) satisfies

Lu<0 U,
uw<0 onU,

then either u =0 oru <0 in U.

Proof. By writing ¢ = ¢ — ¢_, where ¢t = max{c, 0} and ¢~ = max{0, —u} are the positive
and negative parts of ¢, we get

Lu = — Z a (z)u + Z V' (z)Dyu + ¢ (2)u < ¢ (z)u < 0.
ij=1 i=1

23



Thus, applying the strong maximum principle for ¢ > 0 to the subsolution u € C*(U)NC(U)

of ~
Lu <0 inU,
u<0 ondU,

we arrive at the desired conclusion. O

The maximum principle and Hopf’s lemma can be adapted to handle unbounded domains
with non-positive lower-order terms. We provide a version below that will be useful for our
purposes in later chapters; specifically when we study the method of moving planes.

Theorem 1.17. Let U be a domain in R™ with smooth boundary OU, and assume u €
CYHU)NC(U) satisfies

{ —Au+ " b(x)Diu+c(z)u >0 inU,

where b'(x) and c(z) are bounded functions. Then the following hold.

(a) If u vanishes at some point in U, then u=0 in U;

(b) If u is non-trivial in U, then Ou/ov < 0 on OU.

Proof. Part (a) Proceeding by contradiction, we assume u vanishes at some point in U but
u # 0 in U. Therefore, we can consider the positive part of our domain U,

Ut ={zeU|u(z) >0},

which is obviously a non-empty open subset with C? boundary U™, and U \oU # 0.
Note that u = 0 on OU™, and we can pick 2° € UT\OU. We may choose suitably small
R >0 and z' € U* such that 2 € 9Bga(xz') C UT. Then 0Bga(z') C Br(a?).

Let Agr = A\(Bg(z")) denote the first eigenvalue for the Dirichlet Laplacian on Bg(x°) and
suppose ¢r a corresponding positive eigenfunction (see Section for more details). By a
simple scaling and translation argument, it is easy to see Ag = A1/ R?, where \; = \;(B1(0)),
and if ¢, is a corresponding positive eigenfunction for the first eigenvalue A\, we can just
take or(r) = @(z/R).

Set w = u/pr. Obviously, 2° is an interior point in U and a local minimum of w in
Bgr(2°) and so

Dw(z°) = 0. (1.19)

To finish our proof of this part, we verify that w is indeed a supersolution to some suitable
second-order equation, then we apply Hopf’s Lemma to deduce a contradiction with the
vanishing of the gradient at 2°. A simple calculation reveals

—Aw + (—2w) - Dw + Zbi(x)Diw(x) +é(z)w >0 in U,

=1
~

=31, bi (@) Diw(z)
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where, in Bg(x?), there holds

R 4 e(r) = S
pr R pg(2) W=mtr —~  ¢r(7)

o) = —App n 1 Z ' (z)Dipr(r) oA ] Z V' (z)Dipr() ().

By the boundedness of the coefficients b* and ¢, we can choose R > 0 small enough so that
¢ > 0 in Br(z?). Furthermore, w(z) > 0 in Br(2°) and w(z?) = u(z®)/pr(2°) = 0, so the
interior ball condition holds at 2° and we can apply Hopf’s Lemma to conclude that
ow
v
But this contradicts with (1.19)), and this completes the proof of part (a).

(%) < 0.

Part (b) The proof of this part is essentially the same as the proof of part (a), except we
choose z° € QU and take an open ball Brjs(z') C U such that 2° € dBg/2(2'). Since ¢g
can be taken to be radially symmetric and decreasing about the center z°, we have

_ PR, o\ _
vr(0) = Anax, ¢r(z) and W(l‘ )=0.
Hence,
2 (2) = pr(e”) 5o (20) + w(a) 2 (a?) < 0.

]

We give a useful comparison principle that we will be essential in developing the methods
of Chapter [f

Theorem 1.18 (Maximum principle based on comparisons). Assume that U is a bounded
domain. Let ¢ be a positive function on U satisfying

—Aé+ \z)é > 0. (1.20)

Assume that u is a classical solution of

—Au+c(x)u>0 inU,
{ u>0 onOU. (1.21)
If
c(x) > Mz) forall x €U, (1.22)
then

u>0 in U

If U is unbounded, then the result remains true provided that the following additional
condition 1s assumed: ()
u(x

lim inf —= > 0. 1.23
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Proof. We proceed by contradiction. Let v(z) = u(x)/¢(z) and assume that u < 0 at some
point in U. Thus, v < 0 at that same point, since ¢ is positive in U. Let 2° € U be the
minimum of v and by a simple calculation, we obtain that

D¢ 1 A
—Av=2Dv- — + —(-Au+ —u). 1.24

However, since 2° is a minimum of v, we have that

—Av(z?) <0 (1.25)
and

Du(z%) = 0. (1.26)
But from (5.4)-(5.6) and since u(z?) < 0, we have that

0y L AP oy 0 0 0y, (.0 0 0Y,, (0
—Au(x”) + ?(af: Ju(z”) > —Au(z”) + Ma")u(z”) > —Au(z”) 4+ c¢(z”)u(z”) > 0.

By inserting this into and using (1.26]), we get that —Awv(z°) > 0, but this contradicts
with . This completes the proof. In the case that U is unbounded, the same arguments
apply since the additional assumption guarantees that the minimum of v does not leak
away to infinity. |

Remark 1.12. As illustrated in the proof, conditions (1.20) and (1.22)) are required only at

the points where v attains its minimum or at points where u is negative.
In our application of the above theorem, we will consider two cases:

(a) U is a “narrow” region,

(b) the coefficient ¢(x) has sufficient decay at infinity.

First, we examine when U is a narrow region; namely, let us consider the narrow strip with
width ¢ > 0, i.e.,
U={zeR"|0<x </}

We can take ¢(z) = sin((x; + €)/f) so that —A¢p = (1/£)*p. Thus, A\(z) = —(1/¢)?, which
can be “very negative” if ¢ is suitably small.

Corollary 1.5 (Narrow region). If u satisfies (1.21)) with bounded function c¢(x), the width
( of the region U is sufficiently small, c(x) satisfies (1.22)), i.e., c(x) > XNx) = —1/¢%, then

u>0 in U

26



In the case of (b) with n > 3, we can choose a positive number ¢ < n — 2 and take
¢(x) = |z|7%, then a simple calculation yields

Therefore, if ¢(x) has sufficient decay, the previous theorem implies the following.

Corollary 1.6 (Decay at infinity). Assume there exists R > 0 such that
—9_
c(x) > —W, for all |x| > R. (1.27)
T
Suppose that

lim u(x)|z|? = 0.
|z|—o0

Let U be a region contained in B$(0). If u satisfies (5.5) on U, then
u(z) >0 forall x € U.

Remark 1.13. As pointed out in the last remark, one can see that condition (1.27) is only
required at points where u is negative.

The following is a maximum principle for small volume domains due to Varadhan.

Theorem 1.19. Suppose that U is an open bounded domain in R™ and v € C*(U) N CU)
satisfies

Lu<0 U,
w<0 onoU.

Then there exists a § > 0, depending only on n, X\, A, diam(U) and ||c” ||, such that if
|U| <6, thenu <0 in U.

To prove Varadhan’s “small volume” maximum principle requires a simplified case of the
Alexandroff-Bakelman-Pucci (ABP) estimate, which we will study later in Chapter [4] e.g.,
for a close variant of the full ABP estimate, see Lemma [4.1] For convenience, we state here
the simplified version in order to prove Varadhan’s maximum principle.

Lemma 1.5. Suppose that U is an open bounded domain in R", f € C(U) andu € C*(U)N
CW) satisfies
Lu<f iU,
{ u<0 onU.

Then there ezists a positive constant C(n, A\, ) depending only on n, A\, and A, such that
1/n
max < C(n, A, A)diam(U) / 5[ de)
U
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Proof of Theorem[1.19. 1If ¢ > 0 in U, then the result just follows from the standard maxi-

mum principle. Hence, we can assume ¢~ #Z 0 in U.

Now, on the contrary, let us suppose u™ # 0. Then u satisfies v < 0 on the boundary

oU and . "
— 3" @@ Dyu+ 3 b (@) Da+ ¢Ha)u < ¢ (a)u < ¢ ut in U
=1

ij=1
By Lemma there exists a positive constant C'(n, A, A) such that

max u™ < C(n, A, N)diam(U)||c™ || oo o UM max ut

Setting
§ < [C(n, A\, N)diam(U)||c™ || Lo eny] ",

so that if |U| < ¢, then ((1.28)) implies that maxy u™ < 0, which is a contradiction.

1.3 The Newtonian and Riesz Potentials

1.3.1 The Newtonian Potential and Green’s Formula
Definition 1.2. The function
1 )
—lOg‘x|, an:27
D) =1 27 4

) > 3.
onln = 2) ey Ym=3

(1.28)

defined for all x € R™\{0}, is the fundamental solution of Laplace’s equation. In addition,

if f € LP(U) for 1 < p < oo, then the Newtonian potential of f is defined by

w@) = [ Ty

The following theorem is a basic result which states that the kernel I' in the Newtonian
potential is the fundamental solution of Poisson’s equation. In fact, it is a distribution solu-
tion for —Au = dy in R", where J,, denotes the standard Dirac delta distribution supported

at ro € R™.

Theorem 1.20. The functionI' : R"\{0} — R satisfies —AI' = §y in R™ in the distribution

sense.
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Proof. Without loss of generality, we assume n > 3. Pick any ¢ € C2°(R"). For each fixed
€ > 0, straightforward calculations will reveal that

/R B P(@)(-Ap) dr = / —Al(z)p dx

R™\B,(0)
1 / B 1 . 0p
4+ D(|x|2 ") vpdS — —/ |£L'|2 "L dS
(n —2)wn Jog. (0 (n —2)wn Jop, 0 v

1
= — 2)|z|'" - v dS — C||D|| o rmyo(1
T o 2Nl #2088 = CD ol
1
= 0dS +o(1) — ¢(0) ase — 0.
OB.(0)] Joo)* " T A0

Here we used the fact that Al'(x) = 0 in R™\ B.(0), and

1
lim ——— pdS — ¢(0)
=0+ [0B(0)] dB.(0)
by Lebesgue’s differentiation theorem, Theorem [3.4] O

The Newtonian potential also provides a solution to the Poisson equation on bounded
and unbounded domains.

Theorem 1.21. Let f € C*(R™) and define u to be the Newtonian potential of f. Then
(i) u € C*(R"),
(1)) —Au = f in R™.

Proof. Step 1: Clearly,

uw) = [ Ty = [ T -y dy

therefore,

h h
where h # 0 and e; = (0,...,1,0,...0) where the 1 is in the i'* slot. Of course,

flz+hei—y) — flx—y)
h

u(z + he;) —ulz) _ /nr(y)(f(l’—i‘hei —y) —f(x—y)> dy.

— fz,(x —y) uniformly on R" as h — 0,

and thus for e =1,2,...,n,

we) = [ TWule =)y
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Likewise, for i = 1,2,...,n,

Ugz, (.1') = /n F(y)fxzxg (x - y) dy

and this shows u is C? since the right-hand side of the last identity is continuous.
Step 2: Fix € > 0 and suppose n > 3. Due to the singularity of fundamental solution
at the origin, we must be careful in our calculation. Namely, we first consider the splitting

AM@:/Q H@AJ@—yMy+/ D(y)Auflx —y)dy = I} + I2. (1.29)
-(0) R"\B. (0)
Then, polar coordinates implies
1< D ey [ @)l dy < €02 < C2 (130
-(0)

Integration by parts implies

. / LW)A, f(x — ) dy
R7\ B (0)

::/ [W@yl%ﬂm—mdy+/“ lxw%&w—wdﬂw
R\ B.(0) v

0B:(0)
= J! + J2, (1.31)

where v denotes the inward pointing unit normal along dB.(0). Now,

21 < DSl [ TG dS(0) < O (132
Be
Again, integration by parts and since I' is harmonic away from the origin, we get
or
R [ At -pd- [ S dst)
R™\Be (0) 9B:(0) OV
or
= - 5, W@ —y)dS(y). (1.33)
dB.(0) OV
Now, it is clear that DI'(y) = —iﬁ (y #0) and v = —y/|y| = —y/e on 0B.(0). Thus,
or
gy ) =v-DI(y) = ——= on 9B(0).
Hence,
1 1
J=— / flx —y)dS(y) = ————— flx —y)dS(y) — —f(z) (1.34
wn€"_1 9B.(0) ( ) ( ) ’B€(0)| 9B.(0) ( ) ( ) ( ) ( )
as ¢ — 0. Hence, combining the estimates ((1.30)—(1.34)) and sending & — 0 in ([1.29)), we
obtain —Au(z) = f(z) and this completes the proof. O
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Remark 1.14. The proof above remains valid in the case where n = 2 except that the
estimates for I' and J? become

|I1| < Ce?|loge| and |J2| < Cellogel.

The previous result can be easily refined to include both bounded and unbounded open
domains whose sources are locally Holder continuous. We state the result below but omit
the proof, which the reader can find in Gilbarg and Trudinger [13] (see Lemma 4.2).

Theorem 1.22. Let f be bounded and locally Hélder continuous with exponent o € (0,1] in
an open domain U C R", and define u to be the Newtonian potential of f. Then

(i) u e C*U),
(1)) —Au = f inU, and

(i1i) for any x € U,

Dyu(x) = [ Dyl(z—y)(f(x)—f(y)) dy—f(x) Dil'(z—y)v;(y) dS(y), i,j =1,2,...

Up oUy
where Uy is any domain containing U for which the divergence theorem holds and f is
extended to vanish outside U.

In fact, the Newtonian potential for such source terms f is the unique solution of Poisson’s
equation in R™ modulo constants.

Theorem 1.23. Let n > 3, f € C?(R") and suppose u € C*(R") is a bounded solution of
—Au = f in R™. Then
1

u(z) = (=2 /Rn [z =yl fy)dy + C

for some constant C'.

Proof. Define w =T"* f and set v = u —w. Obviously, v is bounded since both v and w are
bounded and v is harmonic in R™. Hence, v is constant, i.e., u = w + C for some constant
C thanks to the Liouville theorem. O]

1.3.2 Riesz Potentials and Sharp Hardy-Littlewood-Sobolev In-
equalities

From the previous theorem, we see that the Newtonian potential provides an explicit formula
for solutions of Poisson’s equation. On the other hand, the integral equation provides a simple
example of a singular integral operator, which can be naturally extended to more general
singular integral operators such as the Riesz potential. Remarkably yet not surprisingly, the
Riesz potentials are very closely related to problems involving fractional Laplacians such
as the Lane-Emden and Hardy-Littlewood-Sobolev systems. We give a definition of Riesz
potentials here and briefly discuss their boundedness in LP spaces.
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Definition 1.3. Let a be a complex number with positive real part Re o > 0. The Riesz
potential of order « is the operator

I = (—A)2,

In particular,

L) = Coa [ o) g,

ge |T — Y[

_ 9—a —2T("5%)
where Cp o = 271 2 F(g)

2

and the integral is convergent if f € S, i.e., f belongs in the

Schwartz class.

The following result is the well-known Hardy-Littlewood-Sobolev (HLS) inequality, which
indicates when boundedness holds for the Riesz potentials in Lebesgue spaces.

Theorem 1.24 (Hardy-Littlewood-Sobolev inequality). Let 0 < o < n and p,r > 1 such

that
1 1l n—«o
-+ -+
p o n

x
‘/ / Lgiy_)adxdy‘ < Copall fllze@mllg

for any f € LP(R™) and g € L"(R"™) where C,, ;. 1S a positive constant.

=2

Then

Remark 1.15. The sharp constant in the HLS inequality satisfies

. _ n 1 |Sn,1| 1—a/n 1 —O[/TZ 1—a/n+ 1—04/71 1—a/n
TP apr n 1—-1/p 1—1/r ’

In particular, if p=1r =2n/(n+ «), then

_ _ _(na)2_ @ ['(n) \o/n
Cnpa = Cn,a) = n+a(F(n/2)> '

In this case, equality in ((1.35) holds if and only if g = cf and
fl@) = AR + o — o)~

for some constant A, v € R\{0}, and some point zo € R". We do not have the necessary
tools to establish the sharp HLS inequality at this time, however, we shall do this in Section

of Chapter 7.

The following is an equivalent formulation of the HLS inequality. It determines the
conditions on the exponents p and ¢ that guarantee I, : LP(R") — L9(R") is a bounded
linear operator.

32



Theorem 1.25. Let a € (0,n), 1l <p <g<oo, f e LP(R") and

T S ngq
<q with ———=—1.e., p= )
n—a«o P q n n + aq

Then
||Ia(f)||Lq(R") < On,p,a“fHLP(R")-

For completeness, we shall give a proof of this version of the HLS inequality in Section
after developing the necessary tools. We prove Theorem [1.24] as a consequence.

Proof of Theorem[1.2]. The proof is just by duality; that is, it follows easily from Holder’s
inequality and Theorem [1.25, Indeed, we obtain

f(@)g(y)
‘/R / |z — y[r—e dxdy’ < [ Fla(l 1@y < [1f e Hagl pagen)
< Copallfllze@mllgllzr @),

where ¢ = p/(p — 1) and we applied the HLS inequality, ||1ogl|1r/@-1®n) < Chpallgllo-@n),

since
1 p-1

—9 _I_ L opol_ o
q n

1 1 n—a« 1
> —
T T P

P T n

[]

Remark 1.16. Conversely, we can show that the boundedness of 1, implies the HLS in-
equality by another duality argument. Namely, by taking r' = r/(r — 1) and because 1/p +
l/r+(n—a)/n=2 < 1/p—1/r" = a/n, Theorem|[1.2] implies

f(@)g(y)
‘/R / dedy < |{Laf 9)| < ||Iaf||LT'(R")“g”LT(R”)

< Cupall fllze@y gl @ny.-

One interesting motivation for considering Riesz potentials is due to their close relation-
ship with poly-harmonic equations. For instance, consider the system

(1.36)

(=A)*?y = |z|7'0?, u >0, inR",
(=A)%y = |z]72uP, v >0, inR"

When « € (0,n) is an even integer and o7, 03 € (—a, 00), ([1.36) is equivalent to the integral
system of Riesz potentials

o1 q
u(z) :/ Mdy, u>0 inR"

R (1.37)
02 p
v(x) = / Mdy, v>0 in R",



in the sense that a classical solution of one system, multiplied by a suitable constant if
necessary, is also a solution of the other when p,q > 1, and vice versa. Interestingly, when
o; = 0, the integral equations in are the Euler-Lagrange equations of a functional
under a constraint in the context of the HLS inequality. In particular, the extremal functions
for obtaining the sharp constant in the HLS inequality are solutions of the system of integral
equations. For more on the analysis of systems and , we refer the reader to the
papers [18, 19l 32], B3] 34, 35] and the references therein.

1.3.3 Green’s Function and Representation Formulas of Solutions

Let U C R" be an open and bounded subset with C* boundary OU. Our goal here is to find
a representation of the solution of Poisson’s equation

—Au=fin U
subject to the prescribed boundary condition
u=g¢g on OU.

We derive the formula for the Green’s function to this problem. Fix x € U and choose € > 0
suitably small so that B.(x) C U. Then, apply Green’s formula on the region V, = U\ B(z)
to u(y) and I'(y — x) to get

[ aAr ) - M- suty) dy = [ )G ) - N0 52 0) dS(). (139
Notice that AI'(z — y) = 0 for = # y and that

ou
- e < n—l = .
‘/aBe(w) Ly —2)5 ) dS(y)) < O max T =o(1)

Then, similar to the proof of Theorem [1.21] we can show that

or 1
/BBE(I) u(y)a(?/ —x)dS(y) = m e u(y) dS(y) — u(x)

as € — 0. Hence, sending ¢ — 0 in (|1.38]) yields

wa) = [t = 0500~ un) g -0} ase) - [ T -a)sutdy. (139)

Indeed, identity holds for any point z € U and any function v € C?(U). This
representation of u is almost complete since we know u satisfies Poisson’s equation and
its values on the boundary are given, i.e., we know the values of Au in U and v = g on
OU. However, we do not know a priori the value of du/dv on OU. To circumvent this,
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we introduce, for fixed x € U, a corrector function ¢* = ¢*(y), solving the boundary-value
problem

A¢p* =0 in U,
{ " =T(y—=x) onoU. (1.40)
As before, if we apply Green’s formula once more, we obtain
— [ "(WAuly)dy = | uly)—(y) —¢"(y ) ( ) dS(y)
U U v
op” ou
- [ G -Te -0 dse).
Now introduce the Green’s function for the region U.
Definition 1.4. The Green’s function for the region U is
G(r,y) =T(y—x) = ¢"(y) for v,y U, z#y.
In view of this definition, adding (1.41]) to ( - yields
oG
w(@) =— [ w(y)z—(z,y)dS(y) — [ G(z,y)Au(y)dy (zeU), (1.42)
U v U
where
oG

%(w,y) = D,G(z,y) - v(y)

is the outer normal derivative of G with respect to the variable y. Here, observe that the

term Ou/Jv no longer appears in identity ((1.42]).

In summary, suppose that u € C?(U) is a solution of the boundary-value problem

—Au=f inU,
{ u=g¢g on JU, (1.43)

for given continuous functions f and g. Then, we have basically shown the following.

Theorem 1.26 (Representation formula via Green’s function). If u € C?(U) solves problem

E5), then
8G
u(z) = —/ g(y)a z,y)dS(y /G z,y)f(y)dy (ze€U). (1.44)
U v

If the geometry of U is simple enough, then we can actually compute the corrector
function explicitly to obtain G. Two such examples are when U is the unit ball or the
hyperbolic or half-space in R".
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1.3.4 Green’s Function for a Half-Space

Consider the half-space
R} = {z = (21,29,...,2,) € R" |2, > 0},

whose boundary is given by dR? = R"'. Although the half-space is unbounded and the
calculations in the previous section assumed U was bounded, we can still use the same ideas
to find the Green’s function for the half-space. In order to do so, we adopt a reflection
argument. Namely, if = (z1,22,...,2,) € R}, we let & = (1,2, ..., —2,), the reflection
of z in the plane OR’ . Then set

o"(y) =T(y—2) =T —21,. .., Yn-1 — Tn-1,Yn + 2,) for z,y € R7.

The idea is that this corrector ¢* is built from I' by reflecting the singularity from z € R
to # € R’. Observe that

¢"(y) =T'(y —x) if y € ORY,

and thus A
" =0 in R",
{ ¢* =T(y—x) on IR, (1.45)
as required. That is, we have the following definition.
Definition 1.5. The Green’s function for the half-space R, is
G($7y) = F(y - ‘T) - F(y - ‘%) fO’f’ r,y € Rﬁ—v x 7& Y.
Then ] N
~ - Yn — Tn Yn L,
Gy, (v,y) =01, (y—2)—T1, (y — :—[ — — .
0 (.9) =Ty ly =) =Ty (y = ) = [P —
Consequently, if y € OR?,
oG 2x 1
v (l’,y) yn(x7y) Wy, |x_y|n
Now if u solves the boundary-value problem
Au=0 inR7%,
{ u=g ondJdRY}, (1.46)
then the representation formula ((1.44)) of the previous theorem suggests that
22y, 9(y)
u(z) = —/ W) 4y (@ e rY) (1.47)
wn Jorn |z —y[" i
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is the representation formula for the solution. Here, the function
2x, 1

wp |z =yl
is called Poisson’s kernel for U = R and is called Poisson’s formula. Now, let us

prove that Poisson’s formula indeed gives the formula for the solution of the boundary-value
problem (|1.46)).

K(z,y) = for x € R,y € ORY}

Theorem 1.27 (Poisson’s formula for R%). Assume g € C(R"') N L>®(R"1), and define
u by Poisson’s formula (1.47). Then

(o) we C*(RL) N L=(RY),
(b) Au=0 in R7,
(c) lim  wu(x)=g(z°) for each point 2" € OR.

r—a0,z€RT

1.3.5 Green’s Function for a Ball

If U = B4(0), we construct the Green’s function through another reflection argument, but
here we exploit an inversion through the unit sphere 9B;(0).

Definition 1.6. If x € R™\{0}, the point

is called the point dual to x with respect to dB1(0). The mapping x — T is inversion through
the unit sphere 0B1(0).

Obviously, the inversion maps points on the sphere to itself, maps the points in the ball

to its exterior R™\ By (0), and maps points in the exterior into the ball. Now fix x € B;(0)

and we want to find the corrector function ¢* = ¢*(y) solving
{ A¢® =0 in B;(0),

" =T(y—x) on 9dB;(0), (1.48)

with the Green’s function

G(z,y) =Ty —z) — ¢"(y).
Notice that the mapping y + I'(y — Z) is harmonic for y # Z. Thus y — |z[* "T'(y — 7) is
harmonic for y # 2. Hence,

¢*(y) == I'(|=[(y — 7)) (1.49)
is harmonic in U = By(0). Furthermore, if y € 9B;(0) and z # 0,
- Y- T 1
oy = 2 =P (o = 275 + 1) = el =2y 2 1= o — ol
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That is, |z — y[*™" = (Jz]|y — Z|)*> ™ and so

¢“(y) =T(y —x) (y € 9Bi(0)),

as required.

Definition 1.7. The Green’s function for the unit ball B1(0) is

G(r,y) :=T(y—2) - [(|z|(y — 7)) (z,y € B:(0)).

(1.50)

Note that the same formula holds when n = 2, where the kernel I is of the logarithmic

type. Now assume u solves the boundary-value problem

Au=0 in B(0),
u=g¢g on dB(0).

Then the representation formula (|1.44)) indicates that
oG
uw) == [ o) e dS().
0B1(0) v
Then, according to ((1.50)),

Gy(r,y) =Ty (y — 2) = T(2|(y = 7))y

We calculate that

1z —y
and
~ 1 y2|x| - Xy 1 yz|x|2_xz
r — ), = ] o B S I 1 )
(el =D = = Gally =20 = "on lo—ol
if y € 0B1(0). Then,
Zyl vi I’ y ylnzyz Yi yz|x|2+x)

Inserting this into ((1.52)) yields the representation formula

Wn 0) |x_y|n

(1.51)

(1.52)
11- | |?
wn |z —y[n

Actually, we can use a dilation argument to get the Green’s function for U = Bg(0). Namely,

suppose now that u solves the boundary-value problem

Au=0 in Bg(0),
u=g¢g on 0Bg(0).
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It is easy to check that a(x) = u(Rx) solves (1.51) with § = g(Rx) replacing g. A simple
change of variables yields Poisson’s formula

_ R —|zf? 9() .
wr) =T [ RS (e Balo) (1.59)

where the function
R?—z|* 1
wp R |$ - y|n

K(ZE, y) = (I S BR(0)7 ye aBR(O))

is Poisson’s kernel for the ball U = Bg(0).

We have established Poisson’s formula under the assumption that a smooth so-
lution of exists. Indeed, the following theorem asserts that this formula does indeed
give a solution.

Theorem 1.28 (Poisson’s formula for the ball B(0)). Assume g € C(0Bg(0)) and define
u by Poisson’s formula . Then

(a) u € C*(Bg(0)),
(b) Au=0 in Bg(0),

(c) lim  wu(x) = g(z°) for each point z° € OBR(0).

z—20,2€ BR(0)

Observe that Harnack’s inequality can be established directly from Poisson’s formula
(11.55)).

Theorem 1.29 (Harnack’s inequality). Suppose u is a non-negative harmonic function in
Br(zo). Then

()t ot < ()

where r = |z — xo| < R.

— u(zo)

Proof. By the regularity and translation invariance properties of harmonic functions, we may
assume zo = 0 and v € C(Bg). Thus, from Poisson’s formula,

R? — |37\2/ u(y)
u(xr) = ——— ———dS(y) (z € Bg(0)). (1.55
) wnll Joppo) lr —yl" ) | )
Now, since R — |z| < |z —y| < R+ |z| for |y| = R, we obtain

1 R—|z|; 1 yn2 1 R+l 1 n—2/
< < .
wnR R+ |2 <R+ |x\> /aBR u(y)dS < u(w) < wnR R — [z (R— |x|) - u(y) s

In view of the mean value property,

1
u(0) = u(y) dS,
0= [,
we insert this into the previous estimates to arrive at the desired result. O

39



From this, we deduce the Liouville theorem.

Corollary 1.7. If u is an entire function, i.e., it is harmonic in U = R", and u is either
bounded above or below, then u is necessarily constant.

Proof. By shifting, we may assume u is non-negative in R”. Then take any point x € R"”
and apply the previous Harnack’s inequality to u on any ball Br(0) with |z| < R to get

(ﬁ)"‘Q—ZLI :z:u(()) < u(z) < (R ix’)mgf Ii',u(o).

Sending R — +o0 here yields u(z) = u(0), and we conclude that u is constant everywhere
in R™ since x was chosen arbitrarily. O]

1.4 Holder Regularity for Poisson’s Equation

Let us motivate the consideration of Holder spaces C*® rather than the classical C* spaces
when dealing with regularity and solvability of elliptic problems of the form Lu = f in U.

For instance, if f € C°(U) and I' = I'(z) is the fundamental solution of Laplace’s
equation, then the Newtonian potential of f, i.e., w =T % f or

wle) = [ Tl =)f)dy
belongs to C>(U). However, if f is merely just continuous, then w is not necessarily twice
differentiable.

Generally, Lu = f in U is uniquely solvable for all f € C*(U) in that there exists a unique
solution u € C?(U) for each such f; namely, the elliptic operator L : C*(U) — C*(U) is a
bijective mapping. On the other hand, we naturally ask if for every f € C(U) the equation
Lu = f has a solution u in C?(U). Interestingly enough, this is not true and so the mapping
L: C*U) — C(U) is not bijective. For instance, if L = —A or L = —(A — 1) and for the
equation Lu = f, it is not true that for every f € C'(U) the corresponding solution u belongs
in C%(U) (see the example given below). Fortunately, if we hope to recover the bijectivity
of the map L, we must instead consider the Holder space C*(U) in place of C(U).

Remark 1.17. One instance where the bijectivity (namely, the invertibility) of the map L
becomes very important is in the method of continuity (see Section @) This method makes
use of the bijection of the solution map and the global C** reqularity estimates to prove
existence results to general elliptic boundary value problems. Therefore, this gives further
motivation and a glimpse of some topics examined in the later chapters.

Example: Let us provide an example in which the solvability of —Au = f for a carefully
chosen continuous f fails within the class of C? solutions. Take the continuous but not
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Holder continuous function

2 2
_ T T ( n+ 2 1 )
1@ = ap (Coglel? T 2= tog 2?2/’

set
g(z) = /—log R(zj — a7),

and let U = Bg(0) with R < 1. Then
u(z) = (a — ai)(~ logla|)"/?
belongs to C(Bx(0)) N C=(Br(0)\{0}) and satisfies

—Au=f in Bg(0)\{0},
{ u=yg on dBg(0), (1.56)

but w is not in C?(Bg(0)) since we can check that lim, o D1yu = —oo. To see this, assume
there exists such a classical solution v. Then w = u — v is harmonic in Bg(0)\{0}, but basic
theory on removable singularities of harmonic functions, see Theorem [I.5] ensures that w
can be redefined at the origin so that w is harmonic in Bg(0). Thus, w is C?*(Bg(0)) and
therefore u must also belong to C*(Bg(0)). Hence, lim, o Di1u exists and we arrive at a
contradiction.

In view of the above observations, we should assume the data f is Holder continuous.
We define what this is among other related concepts in the next subsection.

1.4.1 The Holder function spaces

We first introduce some definitions, particularly the Holder functions and function spaces.
Let 2y be a point in R™ and f is a function defined on a bounded set U containing x.

Definition 1.8. Let o € (0,1). Then f is said to be Holder continuous with exponent

a at xq if the quantity
[f] g = SUP |f($) — f($0)|
B ]

is finite. Here [f]a., is called the a-Holder coefficient of f at x, with respect to U.
Moreover, f is said to be uniformly Holder continuous with exponent « in U if

the quantity @) — £(o)
xr)—J\Yy
[fla;y = sup T e
z,yeU, a7y |z —y

18 finite.

Definition 1.9. Likewise, f is said to be locally Holder continuous with exponent a in
U if f is uniformly Holder continuous with exponent o on compact subsets of U. Obuviously,
the two notions of Holder continuity coincide if U is a compact subset.
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Let a € (0,1), U C R™ be an open set and k a non-negative integer.

Definition 1.10. The Hélder spaces C*(U) (respectively C**(U)) are defined as the sub-
spaces of CF(U) (respectively C*(U)) consisting of functions whose k™ order partial deriva-
tives are uniformly Hélder continuous (respectively locally Hélder continuous ) with exponent

a in U. For short, we denote C%*(U) (respectively CO*(U)) simply by C*(U) (respectively
c*(U)).

Remark 1.18. Let us discuss the endpoint cases for a. If a = 1, C*(U) (respectively
C*(U)) is often called the space of uniformly Lipschitz continuous functions (respectively
locally Lipschitz continuous functions). If a = 0, C*9(U) (respectively C*(U)) are the
usual C* spaces. Moreover, for a € [0,1], Ci*(U) denotes the space of functions in C**(U)
having compact support in U.

For £k =0,1,2,..., consider the following seminorms

[ulr0v = |D*ulo.y = sup sup |D%ul,

Bl=k U
[u]kaU - [D u]a;U = ‘Slllp [Dﬁu]a,U
Bl=k
With these seminorms, we can define the norms
k k
lullor@y = lulke = luleow =Y [uljor =D D7 ulow,
§=0 §=0

[ullora@y = [ulkar = [ulko + [Wkev = [ty + [D*ulau,

on the spaces C*(U), C**(U). It is sometimes useful, especially in this section anyway,
to consider non-dimensional norms on these spaces. In particular, if U is bounded with
d = diam(U), we set

k k
HUHck(U) - ’u|k;U = Zd] [uljor = ZdJ‘DJMO;U,

j=0 7=0

= Julpy + A [ulear = uly + (D oy,

[ulloray =
Not surprisingly, we have the following basic result, which we give without proof.

Theorem 1.30. Let o € [0,1] and U C R™ be an open domain. The spaces C*(U), C**(U)
equipped with the norms defined above are Banach spaces.

The following algebra property holds: the product of Holder continuous functions is
again Holder continuous. Namely, if u € C*(U), v € CP(U), we have uv € C7(U) where
~v = min{«, 5}, and

[uv]| ey < max(1, 72 |ull gaey 0]l o8 o)

HUUHcv(U) < HUHca(U)“UHcB(U)-
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1.4.2 The Dirichlet Problem for Poisson’s Equation

We now develop the regularity properties of Newtonian potentials. We will use this to
then show that Poisson’s equation in a bounded domain U may be solved under the same
boundary conditions for which Laplace’s equation is solvable.

Lemma 1.6. Let f be a bounded and integrable in U, and let w be the Newtonian potential
of f. Then w € CY(R"™) and for any x € U,

Diw(a:):/UDiF(m—y)f(y)dy, i=1,2,...,n.

Proof. 1t is easy to check the following derivative estimates for I':

,
IDil(z —y)| < — |z —y["",
1
Dyl(a—y) < —la =yl ™", (157)
2—n—
[ 1D (@~ y) < Cln Bl — g7,

From this, the function
o@) = [ DI~ )f) dy
U

is well-defined. We now show that v = D;w. To do so, for € > 0, let n.(z,y) = n(|lz — y|/€)
where n = n(]z|) is some non-negative radial function in C'(R) with supp(n) C [0, 1],
supp(n') € [0.2], and

_fo, if|z[ <1,
2= 1) i je] > 2.

Define
wo) = [ eyl = ) ) dy.
U
which is obviously in C*(R™). Then, there holds,
o) = Do) = [ D0 -] ) dy
Boc(x

Hence, if n > 3,

o) — Ditwe(a)] < |1l /

Bae(x)

2ne
n—2

2
[Dil'(z = y)| + —[T(z —y)ldy < [/ lloc-

Note that if n = 2, it follows that
lv(z) — Dyw(x)] < 4e(1 + | In 2¢|).

In either case, we conclude that as ¢ — 0, w, and D;w. converge uniformly on compact
subsets of R" to w and v, respectively. Therefore, w € C'(R") and v = D;w. n
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Lemma 1.7. Let f be bounded and locally Hélder continuous in U with exponent o € (0, 1],
and let w be the Newtonian potential of f. Then

(a) we C*U);
(b) —Aw=f in U;
(c) For any x € U,
Dyul) = [ DyTla=) () ~1@)dy—1(@) | DIG=p)s(0) Sy, ij=1.2.om
i i (1.58)

Here, Uy is any domain containing U for which the divergence theorem holds and f is extended
to vanish outside U.

Proof. Using the derivative estimates of (1.57) for D?I" and since f is pointwise Holder
cotinuous in U, the function

u(z) = [ Dyl'(z—y)(f(y) — f(z))dy — f(x) Dil'(z — y)v;(y) dS,,

Uo 8UO

is well-defined. Let v = D;w and define for € > 0,
~ [ DI = e ),
U

where 7, is the same test function as in the previous lemma. Obviously, v, € C*(U) and for
e > 0 sufficiently small, differentiating leads to

Dyu.(s / Dy(D.T(x — gy, ) f(y) dy
/ Dy(DT(x — gy, ) () — F@)) dy + F(2) | Dy(DT( — gl ) dy

Uo

- / DD — g, 9)(f(9) — F(@)dy+ fx) | DD(x — y)wy(y) dS,.

Uy

Hence, by subtracting this from u(x), we estimate that
) = D@l =] [ D0~ m)DIX =)l ~ ) o
2
< o / (1DuT1+ 21D, Y — ol dy
Bae(w) €

< (5 +4) 29" Vo
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provided that 2e < dist(x,0U). Therefore, D;v, converges to u uniformly on compact subsets
of U as ¢ — 0. Of course, v, converges to v = D;w as ¢ — 0. Hence, w € C*(U) and
u = D;jw. Then, if we set Uy = B,(x) for r suitably large,

1
~dule) = —f@) [ () ds, = fla).
WnT OBy (x)
This completes the proof of the lemma. m

A consequence of Lemmas and is the following theorem. This result should be
compared with Theorem [1.21]as it generalizes that result in that f is assumed to be bounded
and locally Holder continuous in U rather than the stronger condition that f € C?(U).

Theorem 1.31. Let U be a bounded domain and suppose that each point of OU is reqular
(with respect to the Laplacian). Then, if f is a bounded, locally Hélder continuous function
wn U, the classical Dirichlet problem

{—Au:f wn U,

u=g on U, (1.59)

s uniquely solvable for any continuous boundary values g in the class of classical solutions,
i.e., u € C2(U)YNC(U).

Proof. Let w be the Newtonian potential of f and consider the function v = u—w. It is clear
that —Av =0 in U and v = g — w on QU, but it is obvious that the unique solvability of
this boundary-value problem for Laplace’s equation will imply the desired result. Now, the
existence of classical solutions of Laplace’s equation follows from several methods, e.g. the
Perron method, which are provided in the next chapter, and the uniqueness of the solution
is a consequence of the maximum principles. O

Remark 1.19. Here, a boundary point will be called regular (with respect to the Laplacian)
if there exists a barrier function at that point. For the definition of a barrier function, see
in the next chapter discussing Perron’s method. There we shall see that if OU is C?
then each point on the boundary is indeed reqular. Furthermore, the regularity theory below

indicates that the unique solution of the above Dirichlet problem on a Euclidean ball domain
belongs to C**(U) N C(U)

Remark 1.20. If U = Bg(0), the last theorem follows from the two preceding lemmas and
Poisson’s formula (1.55|) for the ball. In fact, we even have an explicit representation of the
unique solution, which is given by

u(z) = K(z, dSy G(x, dy,
() /aBR@ (2,9)g(y) dS, + /B G dy

where K(x,y) and G(x,y) =T'(y — x) — ¢"(y) are Poisson’s kernel and the Green’s function
on the ball, respectively. In particular, for all x,y € Bgr(0), x # y,

Gle.y) =10y —) -1 ( Ly - %w). (1.60)
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1.4.3 Interior Holder Estimates for Second Derivatives

For concentric balls of radius R > 0 centered at xy in R", we set By = Bgr(zg) and By =
Bsr(xo).
Lemma 1.8. Suppose that f € C*(By), a € (0,1), and let w be the Newtonian potential of
f in By. Then w € C**(B;) and

|D*wlg 05, < C(1,0)| flo,asy

|D2w|0;31 + RQ[D2w]a§Bl < C<n7 O‘)<|f‘0;32 + R® [f]a;B2)'
Remark 1.21. For general domains U; C By(xg) and By(xg) C Uy, and f € C*(Us) and w

is the Newtonian potential of f over Usy. Then the statement of Lemma[I.8 with U; replacing
Bi(xo), i = 1,2, respectively, still remains true.

Proof of Lemma[1.8 For any x € By, identity (1.58)) yields

Dijw(z) = . Dyl(z —y)[f(y) — f(2)] dy — f(x) . DT (z — y)v;(y) dS, (1.61)

and thus, by the derivative estimates in ((1.57)),

’Dij’LU(Jf)‘ < |f( )‘Rl n/ dSy+ [f]a;ﬂc |x—y|°‘_”dy
832

nwy, wn Jg,
= S (@) + 2 BB [ flae < Cln, ) ()] + R le) (162)

Then, again implies that for any other point z € B; we have
Dijw(z) = ; DIz = y)[f(y) — f(2)]dy — f(Z) . Dil'(z — y)v;(y) dS,.  (1.63)

Set § = |z — Z| and £ = (x + Z)/2. Subtracting (1.63) from yields
Dijw(x) — Dijw(z) = f(x)ly + [f(x) - f(%’)]b + I3+ 1+ [f( ) = (@) + I,

where

I = / (DT (z — y) — DT(z — )l (y) dS,,

0B>

I = / DiI'(z — y)v;(y) dS,,
0



We estimate each term I;: For some Z between x and Z,

L] < |o— 7| / IDDT(E — y)| dS,
0B
n?2" 1 |x — 7|
= R
J\ o
< n22n—a(}—%) (since § = |z — 7| < 2R),

(since |Z — y| > R for y € 0Bs)

1
|| < Rln/ ds, =2""",
nwy, B>
and
Bl< [ Dy = llfe) - W)l dy
Bs(&)
1 —n
S _[f]a;;c/ |l’ - y|0< dy
Wn B(3/2)s(®)
n 30\«
< —| — e
- a( 2 ) o
Similarly,
n 30\
< (= ._
1< 2(F) [,

B=|[ Dy ds,
9(B2\Bs(€))

< ‘ D,I'(z — y)v;(y) dS,| + ‘ / Dil'(z — y)v;(y) dS,
dB> 0B5(8)

n—1 1 o\l n—1 n—1 n
<2 +—<—) ds, = 2" 4+ 9nl = on,
NWn \2 9B;5(§)

|Is] < |z — Z| |DD;;I'(z —y)||f(Z) — f(y)|dy (for some Z between z and )
Ba\Bs(¢)

1f(@) — fy)]

<ci [ T

< 6] flaz /I—E>5 € —y|*" " dy (since |7 —y| < (3/2)]€ —y| < 3|7 —yl)
/3

< e(n)(1 - )12 (5) 0 e
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Combining these estimates gives us
[Dijw(#) = Dyw(@)| < Cn,a) (BRI @) + [flase + ez )l = 717,
Hence, this along with completes the proof of the lemma. O]
Theorem 1.32. Let f € C§(R™) and suppose u € C3(R") satisfy Poisson’s equation,
—Au=f in R".
Then u € C’g’a(R”), and if B = Bgr(xo) is any ball containing the support of u, then
D%l < C,0) |l and [ul 5 < C)R Pl

Proof. As indicated in Theorem [1.21] or Lemma [1.7] we can conclude that u = I" % f, even
if it was assumed there that f € C*(R") as it still holds true even when f € C§(R™). The
estimates for Du and D?u follow, respectively, from Lemma and Lemma and the fact
that f has compact support. The estimate for |u|o.z follows at once from that for Du. [

The restriction that v and f have compact support in the last theorem can be removed.

Theorem 1.33. Let U be a domain in R™ and let f € C*(U), a € (0,1), and let u € C*(U)
satisfy Poisson’s equation, —Au = f in U. Then u € C**(U) and for any two concentric
balls Br(zo), Bar(zo) CC U, we have

|U’|2,a;BR(ajo) S C(”’ a)(|u|0§BQR(»TO) + R2|f|0,a;BgR(ac0))‘ (164)

A consequence of the interior estimate is the equicontinuity on compact subsets
of the second derivatives of any bounded set of solutions of Poisson’s equation. Therefore,
the Arzela—Ascoli theorem implies the following result on the compactness of solutions to
Poisson’s equation.

Corollary 1.8. Any bounded sequence of solutions of Poisson’s equation, —Au = f in U,
where f € C*(U), contains a subsequence converging uniformly on compact subsets of U to
another solution.

As a consequence of this compactness result, we establish an existence result for the
Dirichlet problem. Here, we denote d, = d,(U) = dist(z,0U).

Theorem 1.34. Let B be a ball in R™ and f be a function in C*(B) for which

supd>P|f(z)| < N < o0
zeB

for some B € (0,1). Then there exists a unique function u € C?(B) N C(B) satisfying

—Au=f inB,
u=0 onJB.
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Furthermore, the solution u satisfies the estimate

sup d,?|u(x)| < CN, (1.65)

€D
where C' = C(B).

Proof. Step 1: Estimate ((1.65]) follows from a simple barrier argument, i.e., let B = Bg(zy),
r = |z — 20| and set w(x) = (R? — r?)?. A direct calculation will show that

Aw(z) = — 2B(R* — )P 2[n(R* — r?) 4 2(1 — B)r?]
< —4B(1 - HRAE — 122 < —f(1 — B)R(R — 1),

Now suppose that —Au = f in B and u = 0 on dB. Since d, = R — r, the hypothesis yields
[f(#)] < Ndj™® = N(R—r)" < —CoN Aw,
where Cy = [5(1 — B)R"]7. Hence,
—A(CoNw £ u) > 0in B, and CoNw £ u =0 on 0B.

Therefore, the maximum principle implies

lu(z)| < CoNw(x) < CNd? for x € B, (1.66)
which implies with constant C' = 2/5(1 — ).
Step 2: We now prove the existence of u. Define

m, if f >m,

fm: f: 1f|f|§m,

—m, if f < —m,

and let {By} be a sequence of concentric balls exhausting B such that |f| < k in B,. We
define u,, to be the solution of —Au,, = f,, in B and u,, = 0 on 0B. By (1.65)),

sup d,,” [um (z)] < Csup di~°|fin(2)| < CN,
z€eB zeB

so that the sequence {u,,} is uniformly bounded and —Au,,, = f in By, for m > k. Hence, by
Corollary applied successively to the sequence of balls By, we can extract a convergent
subsequence of {u,,} with limit point u in C?(B) satisfying —Awu = f in B. Moreover, there
holds |u(z)] < CNd? and so u = 0 on dB. This completes the proof of the theorem. O

49



1.4.4 Boundary Holder Estimates for Second Derivatives

We may refine the interior Holder regularity estimates by extending them up to the boundary.
We focus only on ball domains but the results certainly apply to bounded and open domains
with smooth boundary. We refer the reader to Chapter [3| for more details on obtaining
regularity estimates up to the boundary for general smooth domains.

We start with some notation. Let R} := {x € R™ |z, > 0} be the usual upper half-space
with boundary T' = OR"}, B, := Byg(xg), B1 = Br(xo) where R > 0 and xy € R’.. Moreover,
set By := By NR7% and B = B; NR.

Lemma 1.9. Let f € C*(By) and let w be the Newtonian potential of f in By . Then
w € C2Y(BY) and

D2l , e f];mB; (1.67)
where C' = C(n, a).

Proof. We may assume By intersects T', otherwise the result is already contained in Lemma
. The representation (1.58)) holds for D;;w within Uy = By . If either i or j # n, then the
portion of the boundary integral

D,I'(x — y)vi(y)dS, = D;I'(z — y)vi(y) dS,
B+ B

on T vanishes since v; or v; equals to 0 there. The estimates in Lemma for D;jw (i
or j # 0) then proceed exactly as before with By replaced with By, Bs(£) replaced by
B;s(€)N By and 0B, replaced by B, \T. Finally, D,,,w can be estimated from the equation
—Aw = f and the estimates Dy,w for k=1,2,...,n— 1. n

Theorem 1.35. Let u € C*(By)NC(By), f € C*(BY), satisfy —Au= f in By, u=0 on
T. Then u € C**(Bf) and we have

’u‘;,Oé%B;r S C(’u‘O;B; + R2|f’;),a;3;) (168)
where C' = C(n, a).
/

Proof. Let 2/ = (x1,29,...,2,_1), * = (', —x,) and define

if x, >0,

* _rx / R f(‘rl7 J?n), —
o) = Fleea) '_{ @, =), i 2, <0,
We assume that By intersects T'; otherwise Theorem already implies estimate ({1.68]).
Now set By = {r € R"|2* € Bf} and D = B U B; U (BN T). Then f* € C%(D) and

’
|f*|0,a;B§"

20



Define
wi@) = [ [ =y) =T =~ gl fw)dy
B2
= [ M=y =T =yl du (1.69)
so that w(z’,0) = 0 and —Aw = f in By. Observe that

/B+ F(:v—y*)ﬂy)dy:/ T(z —y)f*(y) dy,

By

so then we get

w(z) = Q/B+ Dz —y)f(y) dy—/DF(fv—y)f*(y) dy.

Letting
W) = [ Ta=)f ) dy
D
the remark following Lemma with U; = B and U, = D implies that
‘DQw*‘;)Va;B;F < C’f*’;),a;D < QC’f’g@;B;'
Combining this with Lemma [[.9] yields

/ /
|D2w|0,a;Bi" S O|f|0,o¢;B;"

Now let v = u — w, then Av = 0 in By and v = 0 on T. By reflection, we may extend v
to a harmonic function in By and thus estimate (1.68)) follows from the interior derivative
estimate for harmonic functions (cf. Theorem 2.10 in [13]). O

Theorem 1.36. Let B be a ball in R™ and u and f functions on B satisfying u € C*(B) N
C(B), f € C*(B) and
—Au=f inB,
{ u=0 ondB,

then u € C**(B).

Proof. By translation invariance, we may assume 0B passes through the origin. The inver-
sion mapping x +— x* := x/|z|? is a bicontinuous and smooth mapping of the punctured space
R™\ {0} onto itself which maps B onto a half-space, B*. Moreover, since u € C?(B) N C(B),
the Kelvin transform of u, i.e.,



belongs to C%(B*) N C(B*) and satisfies

*

—(n x
—Av(z) = |27 f(

|+

), x € B,

Hence, we can apply Theorem to the Kelvin transform v and since by translation
invariance any point of B may be re-centered to be the origin, we conclude that u €

C**(B). O

We conclude now with an application of the boundary estimates to obtain an existence
result for the Dirichlet problem.

Corollary 1.9. Let p € C**(B), f € C*(B). Then the Dirichlet problem

—Au=f in B,
u=¢ ondB,

is uniquely solvable for a function u € C**(B).

Proof. Writing v = u — ¢, the problem is reduced to solving the problem

—Av=f—Ap in B,
v=20 on 0B,

which is solvable for v € C?(B) N C(B) by the usual representation formula via Green’s
functions and consequently for v € C%*(B) by Theorem [1.36] O

1.4.5 A Glimpse at Holder Regularity for General Equations

The Holder regularity estimates above can be extended from the Laplace operator to more
general elliptic operators. We state the extension of the results here, however, we shall revisit
them and offer their proofs in Chapter [3]

As we have seen already, one of the primary motivations for establishing Holder a priori
estimates, or the so-called Schauder regularlity estimates, lies in its importance in generating
existence results for boundary value problems. So, we state the a priori estimates early here
as we will soon need them in the next chapter, which develops various existence results for
many different elliptic problems.

We start by considering the elliptic equation

Lu=f in U, (1.70)

where as usual L is in divergence form, i.e.,

ZD z)Dyu) —|—Zb’ )Diu + c(x)u.

1,j=1
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We suppose a*,b',c € C%(U) for some 0 < o < 1, and take L to be uniformly elliptic, i.e.,
there exist 0 < A < A such that

AEP <Y a(@)&8 < MG forallz € U, £ € R™
3,j=1

We also assume

1~ . L
X{ Z |7 |asr + Z 0" + |C|a;U} < A
=1

4,j=1

Then the following interior a priori estimate holds.
Theorem 1.37 (Interior Schauder estimates 0). For o € (0,1), let u € C**(U) be a solution
of (1.70). Then for U' CC U, we have
1
lullzawr < € { SIS llow + llullow |

where C' depends only on n,a, AJX, A, and dist(U’,0U).

If the boundary of our domain U is nice enough, we can extend the C?“ estimates up to
the boundary.

Theorem 1.38 (Global Schauder estimates). Consider the same assumptions from the pre-
vious theorem and further assume OU € C%*“. Suppose that u € C**(U) is a solution of
(1.70) satisfying the boundary condition u = g on OU where g € C*>*(U). Then

1
il < € (§18llir + ol + s )

where C' depends only on n,a, AJX\, A, and U. Moreover, if u satisfies the mazximum princi-
ple, then the last term on the right-hand side of the global estimate can be dropped.
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CHAPTER 2

Existence Theory

This chapter reviews various methods and techniques for solving both linear and nonlinear
elliptic problems. We will focus mainly on Dirichlet boundary value problems or elliptic
problems defined on the entire space, e.g., R".

2.1 The Lax-Milgram Theorem

Theorem 2.1 (Lax-Milgram). Let H be a Hilbert space with norm ||-|| and B : HxH — R
1s a bilinear form. Suppose that there exist numbers o, § > 0 such that for any u, v € H

(i) Boundedness: |Blu, v]| < allull - ||v]],
(ii) Coercivity: B||lul|* < Blu, ul,
then for each f € L*(U) there exists a unique u € H such that
Blu, v] = (f,v) forall ve H.
To prove the theorem, we first recall the Riesz representation theorem for Hilbert spaces.

Theorem 2.2 (Riesz representation). If f is a bounded linear functional on a Hilbert Space
H with inner product (-,-), then there exists an element v € H such that < f,u >= (v,u)
forallu e H.

It is clear that the inner product is a bilinear form which satisfies both the requirements of
the Lax—Milgram theorem. However, the Lax—Milgram theorem is a stronger result than the
Riesz representation theorem in that it does not require the bilinear form to be symmetric.
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Proof. Existence: For each fixed w € H, v — Blw, v] is a bounded linear functional on H.
By the Riesz representation theorem, there exists a u € H such that (u,v) = Blw, v] for all
v € H. We define the operator A : H — H by u = Afw].

Step 1: Claim that A: H — H is a bounded linear operator: To prove A is linear, observe
that

(A[)\lul + )\QUQ], U) = B[)\lul + )\QUQ, U] = )\13[’&1, U] —+ )\QB[UQ, U]
= (M A[u1] + AAlug], v) for all v e H.

Thus, A[)\lul + /\2’&2] = /\1A[U1] + )\2A[u2]
Moreover, A is bounded since

lAul* = (Au, Au) = B[Au, u] < allull - || Aul|

Hence, ||Au|| < afull.

Step 2: Claim Ran(A) is closed in H.

Let {yx} be a convergent sequence in ran(A) so that there is a sequence {u,} C H for which
yr = Alug] — y € H. By coercivity, ||ur —u;|| < B||Alug] — Alu;]||, which implies {u;} is a
Cauchy sequence in H. Hence, uy converges to some element v € H and y = Alu|; that is,
y € Ran(A), thereby proving Ran(A) is closed in H.

Step 3: Claim Ran(A) = H.

On the contrary, assume that Ran(A) # H. Thus, we have that H = ran(A) & ran(A)*
since Ran(A) is closed, and we choose a non-zero element z € ran(A)+. By the coercivity
condition, 3]|z||* < Blz,z] = (Az, z) = 0 and we arrive at a contradiction.

Step 4: For each f € L?, the Riesz representation theorem once again implies there exists an
element z € H for which (z,v) =< f,v > for all v € H. In turn, we can find a u such that
z = Alul, ie., (z,v) = (Au,v) = Blu, v] for all v € H. Hence, we have found an element
u € H for which Blu, v] = (f,v) for all v € H.

Uniqueness: Suppose that u; and us are two such elements satisfying Blus, v] = (f,v) and
Blus, v] = (f,v) for all v € H, respectively. This implies that Bu; —us,v] = 0 for allv € H.
Now, if v = u; — uy, the coercivity condition implies §||u; — us||* < Bluy — ug, uy — ug] = 0.
Hence, u; = us. O

2.1.1 Existence of Weak Solutions

Our goal here is to prove existence and uniqueness of weak solutions to the Dirichlet boundary
value problem of the following form:

{Lu—l—uu:f in U,

u=0 on U, (2.1)
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where g is a non-negative constant to be determined later. Developing this result relies
mainly on certain energy estimates and the Lax-Milgram theorem. In addition, we will now
focus strictly on the second order differential operator in divergence form with its associated
bilinear form

Blu, v] := /Z DuDv+sz )Djuv + ¢(z)uv dx,
1,j=1

and assume that a”,b',c € L>°(U) for i,j = 1,...,n. Furthermore, assume U is an open and
bounded subset of R™ and denote H := H}(U).
Energy Estimates
Theorem 2.3. There exists constants o, B > 0 and v > 0 such that

(1) |Blu, v]| < allulla|lv]a

(i) Bllulfy < B, o] +1llullaqey for all u,v € H.

Proof. We prove the first estimate of the theorem.

|Blu, v]| = )/ Z a? (1) Uy, Ve, + Zbl T) Uy, V —|—cuvdm‘

=1
< Z ||azy||Loo/ |Du - Dv|dx+2||b2||Loo/ |Du||v|dx+||c||Loo/ |ul|v] dz,
,j=1

since it was assumed that %, b’, ¢ € L= (U). Now apply Holder’s inequality sufficiently many
times and use the definition of the H-norm to get

|Blu, ]| < Cllullalv]|m

for some constant C.
To prove the second part, the definition of (uniform) ellipticity will be used. By uniform
ellipticity, there is some A > 0 such that

/yDu|2dx</Z

4,j=1

Blud + Y Wlawwy [ Dulllds + Jellimey [ wtde (22)
=1

T)Ug, Uy, dx = Blu, u) /Zb’ uxu+cu dx

Using the Cauchy’s inequality with € i.e ab < ea? —|— = a,b>0,e >0, we have

2 1
Dullul < e|Duf? + = :>/ | Dullu] dz < e/ |Du|2dx+—/ & dz.
de U U de [y
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We may choose € > 0 such that e i, [|b]| 2 < 3, then plugging this back into (2.2)
yields

)\/ |Du|2dxgB[u,u]+(2||b2||mw))(e/ |Du|2dx+—/u2dx)+||c||Loo(U)/u2dx
U i—1 U e Jy U

A L 1
SBMM+§Lwam(ggwmme+meﬂéﬁw-

Now some rearrangement of terms yields
A
—/ |Dul? dx < Blu,u] + C/ u? dx.
2 Juy U

Adding 3 [, o [u|* dz on both sides of this inequality gives us our desired result,

A A
Sl < Bluad + (€43 ) Il
]

Remark 2.1. From our estimate (ii), we see that B[-,-| does not directly satisfy the hy-
potheses of the Lax-Milgram theorem whenever v > 0. QOur next theorem will take this into
consideration as it provides our existence and uniqueness result for the Dirichlet boundary
value problem.

Theorem 2.4 (First Existence Theorem for weak solutions). There is a number v > 0
such that for each u > v and each function f € L*(U), there exists a unique weak solution
u € H = H}(U) of the Dirichlet boundary value problem

{Lu+uu:f in U,

u=0 ondU. (2:3)

Proof. Let v be the same from the previous theorem, let 1 > v and define the bilinear form
B, u,v] = Blu, v] + p(u,v) 2 with u,v € H.

Claim: The bilinear form B,,[-, -] satisfies the hypotheses of the Lax-Milgram theorem. More
precisely, we have the bilinear estimate,

| Bulu, v]| = |Blu, v] + p(u, v) 2| < [Blu, v]| + pl(u, v) 2]
< Cllullallvlla + pllullz[v]l
< Cllullallvla,
where in the second line we used the previous theorem and the Cauchy-Swharz inequality.
Moreover, we have the coercivity estimate,
B, Ju,u] = Blu,u] + p(u, w) 2
> Blu, u] + y(u,u)2
> Cllulla,
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where we used the second bound from the energy estimates.
Now fix f € L*(U) and set p;(v) = (f,v)z2. This is a bounded linear functional since,
by the Cauchy-Schwarz inequality,

lpr () = 1(f,0) 2] < [ fllzzllvllze < [1F ]2 llvlla-

Thus, by the Lax-Milgram theorem, we can find a unique u € H satisfying B,,[u, v] = ¢f(v)
for all v € H. That is, u € H is a unique weak solution to the Dirichlet boundary value
problem. O

2.2 The Fredholm Alternative

First, we recall the Fredholm theory for compact operators then apply it to further develop
our existence theory for second-order elliptic equations. Let X and Y be Banach spaces, H
denotes a real Hilbert space with inner product (-,-), and the operator L is the usual second
order elliptic operator in divergence form.

Definition 2.1. A bounded linear operator K : X — Y is called compact provided each
bounded sequence {uy}3>, C X, the sequence { Kuy}32, is precompact in'Y, i.e., there exists
a subsequence {uy, }32, such that { Ky, }52, converges in Y.

Theorem 2.5 (Fredholm Alternative). Let K : H — H be a compact linear operator.
Then

(a) The kernel N(I — K) 1s finite dimensional,

(b) The range R(I — K) is closed,

(¢) R(I - K)=N(I - K*)",

(d) N(I — K)={0} if and only if R(I — K) = H.

Remark 2.2. This theorem basically asserts the following dichotomy, i.e., either
(o) For each f € H, the equation uw — Ku = f has a unique solution; or else

(B) the homogeneous equation uw — Ku = 0 has non-trivial solutions.

Further, should (B) hold, the space of solutions of this homogeneous equation is finite
dimensional, and the non-homogeneous equation

(v) u— Ku = f has a solution if and only if f € N(I — K*)*.
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We shall also require the following basic result on the spectrum of compact linear oper-
ators.

Theorem 2.6 (Spectrum of a compact operator). Assume dim(H) =00 and K : H — H
18 a compact linear operator. Then

(i) 0 € o(K),
(ir) o(K)\{0} = 0, (K)\{0},

(111) o(K)\{0} is finite, or else is a sequence tending to 0.

2.2.1 Existence of Weak Solutions
Definition 2.2. We define the following.
(a) The operator L*, the formal adjoint of L, is
Lo i= = 3 (@ @)s,)ay = D @), + (elo) = 3205, (@) o,
ij=1 i=1 i=1

provided b' € C*(U), i =1,2,...,n.

(b) The adjoint bilinear form B* : H}(U) x HY{(U) — R is defined by
B*[v,u] := Blu,v]
for all u,v € HY(U).

(c) We say that v € H}(U) is a weak solution of the adjoint problem

Lv=f inU,
v=0 on U,
provided that
B[v,u] = (f,u)

for allu e HY(U).
Theorem 2.7 (Second Existence Theorem for weak solutions). There holds the following.

(a) Precisely one of the following statements holds:

(o) For each f € L*(U) there exists a unique weak solution u of the boundary value
problem

Lu=f inU,

{ u=0 on U, (2.4)
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or else

(B) there exists a weak solution uw Z 0 of the homogeneous problem

(2.5)

Lu=0 U,
u=0 on OU.

(b) Furthermore, should assertion () hold, the dimension of the subspace N C H}(U) of
weak solutions of (2.5)) is finite and equals the dimension of the subspace N* C Hy(U)
of weak solutions of

{Lv:O in U, (2.6)

v=0 ondU.
(c) Finally, the boundary value problem (2.4) has a weak solution if and only if

(f,v) =0 for all v e N*.

Proof. Step 1: As in the proof of Theorem [2.4] choose p = v and define the bilinear form
BW[U7 ’U] = B[ua ?}] + V(Ua U)v

corresponding to the operator L,u := Lu + yu. Thus, for each g € L*(U), there exists a
unique u € Hg(U) solving

B, [u,v] = (g,v) for all v e Hy(U). (2.7)

Write u = L7 'g whenever (2.7)) holds.
Step 2: Observe that u € H}(U) is a weak solution of (2.4) if and only if

B, u,v] = (yu+ f,v) for all ve Hy(U), (2.8)
that is, if and only if
uw= L (yu+ f). (2.9)
We can rewrite this as
u— Ku=h, (2.10)

where Ku := L u and h:= L'f.
Step 3: We now claim that K : L*(U) — L?(U) is a bounded, linear, compact operator.
Indeed, from our choice of v and the energy estimates from the previous section, we note

that if (2.7)) holds, then

5”“”?{3((1) < Byfu,u] = (9,u) < [lgllezanllullzzwy < Nlgllezw) llull mywy,
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and so

1K gllz2wy < 1K gl mywy = WLy gl myw) = lellmyw) < Cligllzaw) for g € L*(U)

for some suitable constant C' > 0. However, since H}(U) CC L*(U) by the Rellich-
Kondrachov compactness theorem (see Theorem , we conclude that K is a compact
operator.

Step 4: By the Fredholm alternative, we conclude either

(a) for each h € L*(U) the equation v — Ku = h has a unique solution u € L*(U); or else

(8) the equation u — Ku = 0 has non-trivial solutions in L*(U).

Should assertion («) hold, then according to 7, there exists a unique weak
solution of problem (2.4). On the other hand, should assertion () be valid, then necessarily
v # 0 and we recall that the dimension of the space N of the solutions of u — Ku = 0 is
finite and equals the dimension of the space N* of solutions of the equation

v—K'v=0. (2.11)

However, we have that () holds if and only if u is a weak solution of (2.5) and that (2.11))
holds if and only if v is a weak solution of ([2.6]).
Step 5: Finally, we recall equation w — Ku = h in (a) has a solution if and only if

(h,v) =0

for all v solving (2.11]). However, from (2.11)) we compute that

1

() = 2 f.0) = (") = Lto.

1
Y Y
Hence, the boundary value problem ([2.4)) has a solution if and only if (f,v) = 0 for all weak

solutions v of ([2.6)).
0

Definition 2.3. We say A € X, the (real) spectrum of the operator L, if the boundary value

problem
{ Lu=XM inU,

u=0 on OU,
has a non-trivial solution w, in which case X is called an eigenvalue of L, w a corresponding
eigenfunction. Particularly, the partial differential equation Lu = M for L = —A is often

called the Helmholtz equation.

Theorem 2.8 (Third Existence Theorem for weak solutions). There holds the following.
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(a) There exists an at most coutable set ¥ C R such that the boundary value problem

Lu=Xu+f inU,
u=0 on OU.

has a unique weak solution for each f € L*(U) if and only if X & 2.

(2.12)

(b) If ¥ is infinite, then 3 = {\;}32,, the values of a non-decreasing sequence with A\, —
00.

Proof. Step 1: Let v be the constant from Theorem and assume A > —v. Without loss

of generality, we also assume vy > 0.

According to the Fredholm alternative, problem (2.12) has a unique weak solution for
each f € L*(U) if and only if u = 0 is the only weak solution of the homogeneous problem
Lu=Mu in U,

u=20 on OU.

This is in turn true if and only if © = 0 is the only weak solution of

Lu+~yu=(y+MNu inU,
{ u=20 on OU. (2.13)
Now ([2.13]) holds precisely when
A
uw=L'(y+ Nu= %KU, (2.14)
where, as in the proof of the previous theorem, Ku := yLJ 4 and K is a bounded and
compact linear operator on L*(U).
Now, if u = 0 is the only solution of (2.14)), we see
is not an eigenvalue of K. (2.15)

v+
Hence, we see that (2.12)) has a unique weak solution for each f € L?(U) if and only if
(2.15)) holds.

Step 2: According to Theorem [2.6] the set of all non-zero eigenvalues of K forms either
finite set or else the values of a sequence converging to zero. In the second case, A > —~ and
(2.14) imply that (2.12)) has a unique weak solution for all f € L*(U) except for a sequence

Theorem 2.9 (Boundedness of the inverse). If A & X, there exists a positive constant C
such that

ullrz2@wy < Cllf |22,
whenever f € L*(U) and u € H}(U) is the unique weak solution of

Lu=Mu+f U,
u=0 on OU.

The constant C' depends only on X, U, and the coefficients of the elliptic operator L.
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2.3 Eigenvalues and Eigenfunctions

This section is somewhat of a digression from the rest of the chapter in that we study
eigenvalues for symmetric uniformly elliptic operators. We feel that this follows naturally
from the previous section as we continue to examine properties of compact operators in
the setting of partial differential equations. As such, we only consider symmetric elliptic
operators, but the theory certainly extends to the non-symmetric setting (see [9]).

We consider the boundary value problem

{Lw:)\w in U,

w=0 on OU, (2.16)

where U C R” is open, bounded and connected. We say A € C is an eigenvalue of L provided
there exists a non-trivial solution w of problem (2.16)) where w is called the corresponding
eigenfunction of \. As we shall see, L is a compact and symmetric linear operator (actually
it is really the inverse operator L™! that satisfies these properties) and therefore, elementary
spectral theory indicates the spectrum Y of L is positive, real and at most countable. In
particular, we take L to be of the form

n

Lu=— Z (aijuxi)xj,

ij=1
where a” € C*(U) and a¥ = a’* for i,5 = 1,2,...,n. We note that the associated bilinear
form B[, ] associated with this eigenvalue problem is symmetric, i.e., Blu,v] = Blv,u] for

all u,v € H}(U) since L is formally symmetric.

Theorem 2.10 (Eigenvalues of symmetric elliptic operators). There hold the following.
(a) Each eigenvalue of L is real.

(b) Furthermore, if we repeat each eigenvalue according to its finite multiplicity, we have
X = {Ak}iil
where
0<)\1§)\2§>\3§....

and N\, — 00 as k —> oo.

(¢c) Finally, there exists an orthonormal basis {wy}?_, of L*(U) where wy € Hy(U) is an
eigenvalue corresponding to Ny in (2.16]).

Remark 2.3. The first eigenvalue Ay > 0 is often called the principal eigenvalue of L.
Moreover, as examined in the next chapter, basic reqularity theory ensures the eigenfunctions

wg, for k=1,2,..., actually belong to C*(U). In fact, they belong to C*°(U) provided that
the boundary OU is smooth.
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Proof. In fact, it is simple to show that S = L™! is a bounded and compact linear operator
on L*(U). More precisely, for f € L*(U), Sf = u means u € H}(U) is the weak solution of

Lu=f inU,
u=0 on JU,

Now, we claim that S is also symmetric. To see this, let f,g € L*(U) and take Sf = u

and Sg = v. Notice that

(Sf,9) = (u,9) = Blu, ]
and

(f.8g) = (f,v) = Blu,v].
Hence, the basic theory of compact, symmetric linear operators on Hilbert spaces imply
the eigenvalues of S are real, positive and its corresponding eigenfunctions make up an
orthonormal basis of L?(U). Moreover, for n # 0 and A = !, there holds Sw = nw if and
only if Lw = Aw. Thus, the same properties translate to the eigenvalues and eigenfunctions

of L as well. This completes the proof.
O

Theorem 2.11 (Variational principle for the principal eigenvalue). There hold the following
statements.

(a) Rayleigh’s formula holds, i.e.,

B
A = min {Blu,u]|u€ Hy(U)} =  min M
||UHL2(U) u#0 1N H}(U) HUHLQ(U)

(b) Furthermore, the above minimum is attained by a function wy € HY(U), positive within
U, which is also a weak solution of

Lu=XMu inU,
u=0 on OU.

¢) The principle eigenvalue is simple, i.e., if w € HX(U) is any weak solution o
0

Lu=XMu inU,
u=20 on OU,

then u is a multiple of wi. Therefore, the eigenvalues of L can be ordered as follows:

O<)\1<>\2§)\3§....

2.4 Topological Fixed Point Theorems

This section introduces topological fixed point theorems from functional analysis to establish
the existence of weak solutions to a class of nonlinear elliptic PDEs.
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2.4.1 Brouwer’s Fixed Point Theorem

Before stating and proving Schauder’s fixed point theorem, we state and prove Brouwer’s
fixed point theorem, since we will need it to prove Schauder’s version. In particular,
Schauder’s theorem will be a generalization of Brouwer’s to infinite dimensional Banach
spaces. We adopt the notation that B,.(z) or B(x,r) C R" to represent the ball of radius r
with center z € R", and we denote its closure by B,(z) or B(z,r), respectively.

Theorem 2.12 (Brouwer’s Fixed Point Theorem). Assume u : B1(0) — B1(0) is continuous.
Then u has a fived point, that is, there exists a point x € B1(0)) with u(r) = .

To prove this, we exploit the fact that the unit sphere is not a retract of the closed unit
ball. Namely, we prove

Theorem 2.13 (No Retraction Theorem). There is no continuous function
u: B1(0) — 0B,(0)
such that u = Identity on 0B;(0).

Proof. We proceed with a topological degree argument (see Chapter 1 in [24]). Assume that
the unit sphere is a retract of the closed unit ball and a retraction mapping is given by wu.
Then, homotopy invariance ensures that deg(u, B1(0),0) = deg(Identity, B1(0),0) = 1 and
thus there exists an interior point x € B;(0) such that u(z) = 0. This is a contradiction
with the assumption that u(B;(0)) C 9B (0). O

Proof of Brouwer’s Fized Point Theorem. Assume that u(z) # x for all x € By(0). Thus,
we can define a map w : B;(0) — dB;(0) by letting w be the intersection of 9B;(0) with
the straight line starting at u(x) and passing through x and ending on the boundary. This
terminal boundary point is equal to w(z), or more precisely,

w(z) =+ y(u(x) — z),

where v = «y(z) is a real-valued map that ensures that w(z) has unit norm. Clearly, w is
continuous and w(z) = x for all x € 9B;(0). Therefore, this implies that the unit sphere is
a retract of the closed unit ball and we arrive at a contradiction with Theorem 213 This
completes the proof of the theorem. O

Remark 2.4. Brouwer’s fixed point theorem generalizes to compact and convex subsets, since
such proper subsets with non-empty interior are homeomorphic to the closed unit ball.

2.4.2 Schauder’s Fixed Point Theorem

Let us consider a Banach space X with norm || - ||.
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Theorem 2.14 (Schauder). Suppose that K is a compact and convex subset of X. Assume
that A : K — K 1is continuous. Then A has a fized point in K.

Proof. Step 1: Fix ¢ > 0. Since K is compact, we can choose finitely many points
Uy, Uy, ..., uy, so that the collection of open balls {B(u;, €)}Y, is a cover for K, ie., K C
UYe, B(ui, €). Now let K. be the closed convex hull of the points {uy, u, ..., un, }:

Ke:{vailAiuiIOSAiSLZZN;IAZ:1}.

So K. C K from the convexity of K and by definition of K.
Let us define the operator P. : K — K by

SN dist(u, K — B(ug, €))u;
S dist(u, K — B(u;, €))
Remark 2.5. We define the distance of x € X from a subsetY C X by

P.(u) = for u € K.

dist(z,Y) = ;2}@ dist(z,y) = ;gf [z —yl|.

P.: K — K is well-defined since the denominator Zf\il dist(u, K — B(u;,€)) is never zero
since K C Uf\ﬁl B(uj, €), i.e., u belongs to at least one of the open balls in the cover.

Step 2: In addition, P. : K — K is continuous. Suppose {v;} — v in K. Define for each
j=1,..., N, the operator P/ : K — K by

dist(u, K — B(u;, €))u,
ZZN;I dist(u, K — B(u;,€))

Pl (u) =

€

for v € K.

Then for some constant M,

1P2 (o) = P2()| < M- inf  [lloe =yl = [l = yll|

yeK—B(u )
<M- inf Jop—v| —0 as k — 0.
yeK—B(u;)

Hence, each P/ is continuous so therefore

is continuous. Moreover, for © € K we have

ol = HZZ o dist(u, K — B(ug, €))u; H < HZ < dist(u, K — B(u;, €))(u; —u)H
SN dist(u, K — B(u, e€) Ne dist(u, K — B(uy,€))

_ i dist(u, K — B(u;, ))Hui — ull

N SN dist(u, K — B(uj, €))

[P
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Step 3: Now consider the operator A, : K, — K, defined by A [u] := P.[A(u)], (u € K,).
As remarked earlier, we note that K. is homeomorphic to the closed unit ball B(0, 1) in the
Euclidean space RM¢ for some M, < N,. With this result, we can apply Brouwer’s fixed point
theorem to obtain the existence of a fixed point u, € K, with A[u] = u..

Step 4: We have that {u.}o forms a sequence in K. The compactness of K implies that
there is a subsequence, {uc, }¢,>0, f {uc}e>0 that converges to some element v € K. We now
will show that this element v is in fact a fixed point of A. Using the bound from Step 2, one
can establish that

lhtey — Al 11l = 1A ] = AfueJI| = 11 Py [Alue, )] — Alug, ][ < 5

By utilizing the continuity of A, as €¢; — 0 then the bound gives us that ||v — Av|| < 0 and
thus Av —v = 0. O

2.4.3 Schaefer’s Fixed Point Theorem

We shall deduce Schaefer’s fixed point theorem from Schauder’s. We shall see that this
theorem is much more useful in application to PDEs since we work with compact operators
rather than compact subsets of our Banach space X. However, before proceeding, we give
two equivalent definitions on the notion of a compact operator or map.

Definition 2.4. A (nonlinear) mapping A : X — X on a Banach space X is compact if

1. for each bounded sequence {uy}2, in X, the sequence {Alug|}2, is precompact, i.e.,
has a convergent subsequence in X.

2. for each bounded set B C X, A(B) is precompact in X, i.e., its closure in X is a
compact subset of X.

Remark 2.6. The former definition of sequential compactness was already provided in the
previous section concerning the Fredholm alternative.

Theorem 2.15 (Schaefer). Suppose A : X — X is a continuous and compact mapping.
Assume further that the set S = {u € X |u = AAlu|, for some 0 < X\ < 1} is bounded. Then
A has a fixed point in X.

Proof. Suppose u = AA[u| for some X € [0,1]. Since S is bounded, we can find M > 0 such
that ||u|| < M. Define A : B(0, M) — B(0, M) by

Alu] if |A[u]|| < M,
A =¢ _ (2.17)




Set K to be the closed convex hull of A(B(0,1)). Since A is compact, and any scalar
multiple of a compact operator is compact implies that A is compact as well. Using the
result that the convex hull of a precompact set is precompact, we deduce that K is a convex,
closed and precompact subset of X. Hence K is a compact and convex subset of X and
A: K — K is a compact and continuous map. By Schauder’s fixed point theorem, there
exists a fixed point u* € K with Alu*] = u*.

We will now show that u* is also a fixed point of A. Assume otherwise; so that || A[u*]|| > 0
and u* = M[u*] with A = 22— < 1. However, ||u*| = |[[A[u*]|| = M since ||AA[u*]|| =

| Afux]|l
Aﬁiﬁfm” — A[u*] = M, a contradiction.

]

2.4.4 Application to Nonlinear Elliptic Boundary Value Problems

We focus on solving a class of non-linear elliptic PDEs which can be treated as compact
operators on some suitable function space. In such cases, Schaefer’s fixed point theorem can
be applied. We provide a fundamental example.

Consider the semilinear boundary-value problem

{ —Au+b(Du) 4+ pu = f inU (2.18)

u=0 on U,

where U is a bounded and open subset of R™ and dU is smooth, b : R — R is smooth and
Lipschitz continuous so that

b(p)| < C(Ip[ +1)
for some positive constant C'. We will prove the following claim.
Theorem 2.16. If u > 0 is sufficiently large, there exists a function u € Hy(U) solving the
boundary-value problem . Furthermore, u also belongs to H*(U).
Proof. We prove the theorem in three main steps.

Step 1: Given u € Hj(U), set f := —b(Du). So by Lipschitz continuity we can show
f e L*(U) since
|[f(w)] = [b(Du)| < C(|Du| + 1),
then
1|2y < (1Dl 2wy + C < Jull gy ) + € < oo

Now we will define the map A : HJ(U) — H}(U). Formulate the linear boundary value
problem

{ —Aw+ = f(u) U (2.19)

w=0 on OU.
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Since f was shown to belong to L?(U), linear PDE theory ensures the existence of a unique
weak solution w € HJ(U) of the linear problem (2.19). Hence, for u € Hj(U), define
Alu] = w. Moreover, basic elliptic regularity theory yields the estimate

lwllg2wy = 1ALl 22y < CNl fll2w

for some constant C' (see Theorem in the next chapter). Combining this with the above
L? estimate on f, we get

lwllz2@wy = Al g2y < Cllullgpey +1)
for some constant C.

Step 2: We will show that A : HJ(U) — H}(U) is a continuous and compact mapping.
Suppose that {ug}32, — w in Hj(U). Since

||w||H2(U) S O(H“”H&(U) + 1) for each k € N,

this implies that
sup e (1) < oc.

Then, as a consequence of the Rellich-Kondrachov compactness theorem (see Theorem,
there is a subsequence {wy, }52, and a function w € Hy(U) with {wy,}32, — w in Hy(U).
Note that each element of the subsequence satisfies —Awy, + pwy; = b(Duk].). Now if we
multiply this by any v € H}(U) and integrate over U we obtain

/ —Awy,;v + pwy;v dr = —/ b(Duy; v dz.
U U

Integration by parts on the first term yields

/ Duwy,; - Dv + pwy,v do = —/ b(Duy,)v dx.
U U

Taking the limit as 7 — oo gives us
/ Dw - Dv + pwvdzr = —/ b(Du)vdx for all v € Hy(U).
U U

This shows that A[u] = w and Afu;,] — Alu] in H}(U) given uy — u in H}(U). So A is a
continuous map.

It is similar to show that A is compact. Take {uy}3°, to be a bounded sequence in Hj (U)
We have already shown that supy, ||wi| g2y < 00 so {Afug]}72, is a bounded sequence in
H?(U) N H}(U); therefore it must contain a strongly convergent subsequence in H}(U).
Again, this is a consequence of the Rellich-Kondrachov compactness theorem, which says
that H%(U) is compactly embedded into H(U).

Step 3: The final part to show is that if u is sufficiently large, the set
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S = {uEH&(UHu:)\A[u] for some 0 < \ < 1}

is a bounded set in H}(U). So let us assume u € S so that u/\ = A[u] or u € H*(U)NH(U)
and —Au + pu = Ab(Du) a.e. in U. Multiply (2.18)) by u then integrate over U to get

/(—A+uu)uda:: /Du-Du+u]u|2dx:/|Du!2+ulu|2d9§
U U U
_ —//\b(Du)udxg/\b(Du)Hu|d:c§/C(lDu|+1)|u!d:c
U U U

1 1
§—/(|Du|+1)2+0|u|2dx§—/ |Du|2+K/ lul® + 1dx
2 Ju 2 Ju U

for some constants C' and K independent of A. This implies that

1 1
—/ |Du\2d93+(u—K)/ \u|2d:v§K/ dr =: =M?
2 Ju U U 2

where M is a positive constant. From our bounds, note that M is independent of the choice
of u € S. So if we choose

1
— K+ =

then . .
—/ lul® + |Dul? dz < = M?.
2/, 2

Hence, [ull g3y < M < oo for all u € S, i.e., S is bounded in Hy(U).
Finally apply Schaefer’s fixed point theorem on X = H{(U) to show that A has a fixed
point in H*(U) N Hg(U). By our construction of the mapping A, this fixed point solves our

semilinear elliptic problem.
O

2.5 Perron Method

In this section, we introduce the Perron method to obtain the existence of classical solutions
to Dirichlet problems on general domains provided that the solutions of the same problems
on ball domains are known to exist. For simplicity and as our main example, we consider
Laplace’s equation on general domains. That is, let U be a bounded domain in R™ and ¢ be
a continuous function on OU. Consider

{ —Au=0 inU,

u=¢ on JU. (2:20)

Note that, if U is an open ball, then the solutions of are given by Poisson’s formula via
the Green’s function on a ball domain. Otherwise, we shall use the Perron method in which
the maximum principle plays an important role. First, we define continuous subharmonic
and superharmonic functions based on the maximum principle.
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Definition 2.5. Let U be a bounded domain in R™ and v be a continuous function in U.
Then v is subharmonic (respectively superharmonic) in U if for any ball B C U and any
harmonic function w € C(B),

v < (respectively >)w on OB implies v < (respectively >)w in B.

Before introducing the Perron method, we start with some preliminary results.

Lemma 2.1. Let U be a bounded domain in R™ and u,v € C(U). Suppose u is subharmonic
i U and v is superharmonic in U with u < v on OU. Then u < v in U.

Proof. Without loss of generality, let us assume U is connected. Indeed, v —v < 0 on OU.
Set M = maxg(u — v) and

D={zeU|ulx)—v(x)=M}CU.

We claim that D is both an open and relatively closed subset of U and so, by the connect-
edness of U, either D = () or D = U. It is clear that D is a relatively closed subset by the
continuity of u and v. To show D is open, take any point zy € D and take r < dist(zg,0U).
Let u and v solve, respectively,

Au =0, in B,(xg), uw=u on dB.(xy),
Av =0, in B.(z9), v=v on 0B,(x).

Now, the existence of the solutions @ and v is guaranteed by Poisson’s formula for U = B,.(x).
Moreover, by recalling the definitions of subsolutions and supersolutions, we deduce that
u<uand v <win B,(xy). Therefore,

u—0v>u—vin By(xg).

Next,
{ Alu—0v)=0 in B, (xp),
u

With u —v < M on 0B, (), the maximum principle implies ©« — v < M in B,(xg). In
particular,
M > (u—1v)(zg) > (u—v)(zg) = M.

Hence, (@ —v)(x9) = M and then @ — v has an interior maximum at xy. Then, by the strong
maximum principle, % — o = M in B,(x), i.e., w — v = M on 9B, (x), and this holds for
all r < dist(xg,0U). Then u —v = M in B,(x¢) and thus B,(xy) C D. We conclude that
D =0or D=U,i.e., either u — v attains its maximum only at OU or u — v is constant in

U. By u <wvin 90U, we have u < v in U in both cases. O

Remark 2.7. In the proof above, we actually proved the strong maximum principle: Either
u<vinU oru—uvis constant in U.
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Lemma 2.2. Let v € C(U) be a subharmonic function in U and B CC U is a ball. Let w
be defined by w = v in U\B and Aw = 0 in B. Then w is a subharmonic function in U and
v<winU.

Remark 2.8. Here, the function w is often called the harmonic lifting of v in B.

Proof of Lemma[2.4. The existence of w is implied by Poisson’s formula for U = B. Also, w
is smooth in B and continuous in U. We also have v < w in B by definition of subharmonic
functions in U. Now take any B’ CC U and consider a harmonic function u € C(B’) with
w < wuondB. By v <won dB’, we have v < u on 0B’. Then, v is subharmonic and u is
harmonic in B’ with v < u on 0B’. By Lemma 2.1, we have v < u in B’. Hence, w < u in
B\B'. Additionally, both w and u are harmonic in BN B" and w < u on (B N B’). So by
the maximum principle, we have w < u in BN B’. Hence, w < u in B’. We then conclude
that, by definition, w is subharmonic in U. This completes the proof of the lemma. m

Now we are ready to solve (2.20]) via the Perron method. Set

u,(x) = sup{v(z) |v € C(U) is subharmonic in U, v < ¢ on U }. (2.21)

Ultimately, our goal is to show that this function u, is indeed a solution of the Dirichlet
problem (2.20)). The first step in the Perron method is to show that w, in (2.21)) is indeed

harmonic in U.

Lemma 2.3. Let U be a bounded domain in R"™ and ¢ be a continuous function on OU.
Then u, defined in (2.21)) is harmonic in U.

Proof. Set

S, = {v|v € C(U) is subharmonic in U, v < ¢ on 0U},

and we set & = S, if there is no confusion in its meaning. Then for any z € U,
u,(x) = sup{v(z) |v € S}.

Step 1: The quanitity w,, is well defined.
To show this, first set
= mi d M= .
m=ming an max ¢

We note that the constant function m is in S and thus the set S is non-empty. Next, the
constant function M is clearly harmonic in U with ¢ < M on dU. By Lemma [2.1] for any
vES,

v<M in U.

Thus u, is well-defined and u, < M in U.
Step 2: We show S is closed by taking the maximum among finitely many functions in

S.
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Choose arbitrary vy, vs,...,vr € S and set
v = max{vy, va, ..., U}

It follows easily, by definition, that v is subharmonic in U. Hence, v € S.
Step 3: We prove that u, is harmonic in any B, (z) C U.
By definition of u,,, there exists a sequence of functions v; € S such that

hm 'Ui(l'o) = ’U/@(QZ()).
71— 00
We may replace v; above by any v; € S with ©; > v; since
vi(wo) < Bi(wo) < up(o)-
Replacing, if necessary, v; by max{m,v;} € S, we may also assume
m < v; <u, in U.

For fix B,(xy) and each v;, we let w; be the harmonic lifting in Lemma . Then w; = v; in
U\B,(xy) and
Aw; =0  in B,(zo),
{ w; =v; on 0B (xg).

By Lemma w; € S and v; < w; in U. Moreover, w; is harmonic in B,(xy) and satisfies
lim w; () = uy(20),
1—>00
m < w; < uy in U,

for any i = 1,2, .... By the compactness of bounded harmonic functions (see Corollary ,
there exists a harmonic function w in B, (z¢) such that a subsequence of {w;}, we still denote
by {w;}, converges to w on compact subsets of B,(zg). We deduce that

w < uy, in By (zg) and w(zg) = uu(xo).

We now claim that u, = w in B, (zy). To see this, take any z € B,(z,) and proceed similarly
as before, with Z replacing xo. By definition of w,, there exists a sequence {7;} C S such
that
lim 0;(Z) = uy, ().
1—00
As before, we can replace, if necessary, v; by max{v;, w;} € S. So we may also assume that
w; < v; <y in UL
For the fixed B,(z() and each v;, we let w; be the harmonic lifting in Lemma [2.2] Then,
w; € S and v; < w; in U. Moreover, w; is harmonic in B, (xy) and satisfies
lim w; () = uy(T),
1—00

m < max{v;, w;} < w; <u, in U,
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for any i = 1,2,.... Again, by compactness, there exists a harmonic function w in B, (x)
with a maximum attained at xy. Then, by the strong maximum principle applied to w — w
in B, (zg) for any ' < r, we deduce that w — w is constant and thus is equal to zero. This
implies w = @ in B,(z¢) and particularly, w(z) = @w(Z) = u,(z). Hence, w = u,, in B, (zy)
since Z was chosen arbitrarily in B, (zo). This proves u, is harmonic in B, (zo). O

Observe carefully that u, as given in the previous lemma is only defined in U. To discuss
the limits of u, () as x approaches the boundary, we must make some additional assumptions
on the boundary of U, oU.

Lemma 2.4. Let ¢ be a continuous function on OU and u, be the function defined in (2.21]).

For some xy € OU, suppose w,, € C(U) is a subharmonic function in U such that
Wy (20) =0, wyy(z) <0 for any = € OU\{xo}, (2.22)

then
Jim () = o).
Proof. As before, consider the set

S, ={v|v € C(U) is subharmonic in U, v < ¢ on OU}.

To simplify notation, we just write w = w,, and set M = maxyy |¢|. Let € > 0 be arbitrary,
and by the continuity of ¢ at xy, there exists a d > 0 such that

lp(z) — (x0)| < € for any = € OU N Bs(xo).
We then choose K suitably large so that —Kw(x) > 2M for any x € OU\ Bs(xo). Thus,
lo(x) — p(z0)| < e — Kw for z € oU.

Since ¢(zg) — € + Kw(x) is a subharmonic function in U with ¢(x¢) — e + Kw < ¢ on U,
we have that p(z¢) — e+ Kw € S,. The definition of u, then implies that

o(xg) —e+ Kw < u, in U. (2.23)

However, ¢(x¢) + ¢ — Kw is super-harmonic in U with ¢(zg) + ¢ — Kw > ¢ on OU. Thus,
for any v € S, we obtain from Lemma

v(z) < (xg) + € — Kw(x) for z € U.
Again, by the definition of w,,

uy(x) < p(xg) + € — Kw(x) for z € U. (2.24)
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Hence, (2.23) and (2.24) imply
luy(x) — o(z0)| < € — Kw(z) for z €U,
and since w is continuous so that w(z) — w(xy) = 0 as v — x¢, we arrive at

lim sup |uy,(z) — p(x0)] < €.
T—T0

The desired result follows once after sending ¢ — 0.
O

Remark 2.9. The function w,, satisfying s often called a barrier function. Barrier
functions can be constructed for a large class of domains. One type of domain, for instance,
is when U satisfies an exterior sphere condition at xq € OU, i.e., there ewists a ball
By, (o) such that

UN Byy(yo) =0, UN Byy(yo) = {wo}-

To construct a barrier function at xy, we take
weo(#) = (@ — o) — (w0 — yo) for any v € U

where I' is the fundamental solution of Laplace’s equation. Therefore, wy, is harmonic in U
and satisfies (2.22)). In addition, we mention that the exterior sphere condition always holds
for C? domains.

Combining the previous lemmas and remark, we have essentially constructed a solution
u = u, to the Dirichlet problem (2.20). That is, we have shown the following existence
result.

Theorem 2.17. Let U be a bounded domain in R™ satisfying the exterior sphere condition
at every boundary point. Then, for any ¢ € C(OU), the Dirichlet problem (2.20) admits a

solution uw € C*(U)NC(U).

In summary, the solvability of the Dirichlet problem for Laplace’s equation depends on
both the data g and the geometry of the domain U. As indicated in Lemma the issue
revolves around the following question. When can the harmonic function from the Perron
method be extended continuously up to the boundary? In other words, when are the points
of the boundary regular with respect to the Laplacian? Of course, g being continuous on
OU and U satisfying the exterior sphere condition are enough to give a positive answer to
this question. Alternatively, another criterion indicating when a boundary point is regular
with respect to the Laplacian can be given in terms of 2-capacities. This criterion is called
the Wiener criterion, and it can be generalized to uniformly elliptic equations in divergence
form.
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Let n > 3 and
KP={f:R" = R,|fecLF(R"),Df € LP(R";R™)}.

If A C R", we define the p-capacity of A by
Cap,(A) = inf {/ |Df|Pdx . f e KP, A Cinterior{f > 1}} (2.25)
R?’L

By regularization, note that

Cap,(i) =int { [ DfPds : f € CZRY), 2 e}

for each compact set K C R".
Let xg be a boundary point in QU. Then for any fixed A € (0, 1), let

Aj={z ¢ U : |x —zo| <N}

The Wiener criterion states that z( is a regular boundary point of U if and only if the
series

— Caps(4;)
M\ (n—2)

J=0
diverges.

2.6 Continuity Method

In this section, we introduce the continuity method to prove the existence of classical solu-
tions to general uniformly elliptic equations of second-order. One crucial ingredient of the
method relies on global C?* a priori estimates of solutions (see the Schauder estimates in
Section and this provides one important application of the regularity theory for such
equations. In the next chapter, we will investigate the various types of regularity properties
of solutions to uniformly elliptic equations in great detail.

Let U C R" be a bounded domain, let a¥,b" and ¢ be defined in U with a¥ symmetric.
Consider the second-order elliptic operator

Lu = —a"(x)Dyju + b'(z)Diu + c(x)u in U
and assume L is uniformly elliptic in the following sense:
a”(2)€&; > Mé? for any x € U and € € R”

for some positive constant A > 0.
We prove the following general existence result for solutions of Dirichlet boundary value
problem with C*% boundary values involving the operator L with C® coefficients.
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Theorem 2.18. Let U C R" be a bounded C** domain, let L be a uniformly elliptic operator
as defined as above with ¢ > 0 in U and a",b,c € C*(U) for some a € (0,1). Then for any
f € C*U) and ¢ € C**(U), there exists a unique solution u € C**(U) of the Dirichlet

problem
Lu=f inU,
{ u=¢ ondU. (2.26)

In fact, we shall prove the solvability of the boundary value problem (2.26)) if the same is
true for the boundary value problem with L = —A, i.e., for Poisson’s equation. Of course,
the latter is a basic known result and so Theorem follows accordingly.

Theorem 2.19. Let U C R" be a bounded C** domain, let L be a uniformly elliptic operator
as defined above with ¢ > 0 in U and a¥,b,c € C*(U) for some a € (0,1). If the Dirichlet
problem for Poisson’s equation

—Au=f iU,
{ u=¢ on U, (2.27)

has a C**(U) solution for all f € C*(U) and ¢ € C**(U), then the Dirichlet problem,

Lu=f iU,
{ u=¢ on U, (2.28)

also has a (unique) C**(U) solution for all such f and .

Proof. Without loss of generality, we assume ¢ = 0; otherwise, we consider Lv = f — Ly in
U and v =0 on OU.

Consider the family of equations:
Liw=tlu+ (1—-t)(-A)u=f

for t € [0,1]. We note that Ly = —A and Ly = L.
If we write -
Liu = a (z)Diju + bi(x) Diu + ¢;(x)u,

we can easily verify that B
a;) (2)&:€; > min(1, A)[¢[*
for any x € U and ¢ € R™ and that

|aij\0a(0)a |b§|0a(if)> |ct| ooy < max(1,A)
independently of ¢ € [0, 1]. Thus,

| Lyt ce(ay < Clulczaw)
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where C'is a positive constant depending only on n, «, A, A and U. Then for each ¢ € [0, 1],
L;: X — C*(U) is a bounded operator, where

X={ueC*>(U)|u=0 on oU}

is the Banach space equipped with the norm | - [¢2.0(7)-
Define the set I containing the points s € [0, 1] such that the Dirichlet problem

Liu=f inU,
{ u=0 on U, (2.29)

is solvable in C%¢(U) for any f € C*(U). We take an s € I and let u = L' f be the (unique)
solution. Then, standard global C** estimates (cf. Theorem [1.38) and the maximum prin-
ciple imply

LS flezew) < Clflee@)-
For any t € [0,1] and f € C*(U), we can write Lyu = f as

Lou=f+ (Ls— L)u= f+(t —s)(Au— Lu).
Hence, u € C**(U) is a solution of
Liuw=f inU,
u=0 on U,

if and only if
u= L' (f+(t—s)(A~ L)
For any u € X, set
Tu=L;'(f + (t —s)(Au — Lu))
so that T': X — X is an operator, and we claim T is a contraction mapping. Indeed, for
any u,v € X,
Tu — Twlcoa@y = |(t = )L (A = L) (u = v))|c2a)
< Ot = s|[(A = L)(u = v)|ca@) < Clt = s[|lu = v|czam).

Therefore, T : X — X is a contraction mapping if |t —s| < ¢ := C~'. Hence, for any ¢ € [0, 1]
with [t — s| < 4, there exists a unique u € X such that u = Tu, i.e.,

u=L;'(f+ (t — s)(Au— Lu)).
Namely, for any ¢ € [0,1] with [t — s| < § and any f € C%(U), there exists a solution of
u € C?**(U) of

Liuw=f inU,
u=0 on JU.

Therefore, if s € I, then t € [ for any t € [0, 1] with |t —s| < §. So we can divide the interval
[0, 1] into subintervals of length less than 6. By 0 € I, we deduce 1 € I. This completes the
proof of the theorem. O]
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2.7 Unique Solvability of the Dirichlet Problem via
Schauder Estimates and Maximum Principles

In this section, we establish existence and uniqueness of a classical solution to the following
general Dirichlet problem,
{ Lu=f inU, (2.30)

u=g on U,
where
-3 Dy 0D) + 3D o
3,7=1

We suppose a, b, ¢ € C*(U), and L is uniformly elliptic, i.e., there exist 0 < A < A such
that

AEP < Z 2)&6; < AP for all z € U, € € R™.

7,0=1

{Z |azJ|aU+Z|b |aU+yC|aU} <A,

i,j=1

We also assume

If our domain and its boundary are nice enough, we derive our existence result using a
simple iteration argument.

Proposition 2.1. Let OU € CI"2+4 and suppose ¢ > 0, f € C*(U) and g € C*>*(U),
where 0 < o < 1. Then the Dirichlet problem (2.30)) admits a unique solution u belonging to
c2a (D).

Proof. Assume, without loss of generality, that ¢ = 0. And for all 1 < 7,7 < n, suppose
the sequences a?‘,‘ b}%, ¢k, and fi are in the class C>°(U) and converge uniformly on U,
respectively, to a”, b', c and f with ¢, > 0, || filla:ov < 2||fla:vs

%|§|2 <) a6 <2MEP forallz €U, £ R,

ij=1

and

(=, G
DT Jafla + D Ikl + ledla } < 24
i=1

1,j=1

Then consider the sequence of approximate Dirichlet problems,

Lkuk == fk in U,
{ uF=g=0 ondU, (2.31)
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where . .
Lyuw =~ D;(aff(x)Du) + > bi(x)Diu + ci(x)u. (2.32)

ij=1 j=1
For each k = 1,2,3, ..., the existence of a unique weak solution u* € H}(U) of (2.1) can
be deduced from the previous sections. In fact, the H*-regularity theory for weak solutions
(see, e.g., Theorem [3.16) implies that u* € HW2+4(U) N HY(U) and thus u* € C?*(0)
thanks to the Sobolev embedding theorem. Then, by the Global Schauder estimates of

Theorem [1.38]

|uk|2,o¢,U S C|fk|oc;U S 20|f|a;U7

where C' > 0 is independent of k. Thus, by the Arzela-Ascoli Theorem, there exists a
subsequence of solutions, which we still denote by {u*}, that converges to some function
u € C*(U) that satisfies (2.30). The C** regularity of the limit solution u is a consequence
of the global Schauder estimates, and its uniqueness is ensured by the strong maximum
principle. O

The previous result imposes a fairly strong regularity assumption on the boundary oU.
We can remove this so long as we assume our domain satisfies the exterior sphere condition.
Specifically, the idea is to find a unique limiting solution just as we did in the previous
proposition. Then, the exterior sphere condition ensures this limiting solution satisfies the
boundary condition, and to verify this, we shall make use of the maximum principle combined
with a carefully chosen barrier function. The approach is similar to what we looked at earlier
with the Perron method.

Theorem 2.20. Let U satisfy the exterior sphere condition defined in[2.9, and besides the
strong reqularity condition on the boundary, we assume the same conditions as given in
Proposition (2.1, Then the Dirichlet problem admits a unique solution u belonging to
C*(U)YNn C().

Proof. Step 1: To invoke Proposition [2.1, we extract a sequence of domains U, C U such

that OU, € C"/2*4 and sup,yp, dist(z, 0U) < 1/k. We also choose a sequence g € C*(U)

such that |gr — glo.w < 1/k. By Proposition , the class of Dirichlet problems,
{ Ly =f inU,

k

u® =gr on U, (2.33)

where L, is defined as in (2.32), admits a unique solution u* € C%*%(U) for each k =
1,2,3,.... For any U’ CC U, applying the interior Schauder estimate (Theorem [3.20)) fol-
lowed by the weak maximum principle (Theorem [1.12)) yields, for sufficiently large k,

2007 < C|flaw + o) < C(|flawr +1/k),

[u”

where C' > 0 is independent of k. The Arzela-Ascoli theorem further ensures we can extract
a subsequence, which we still denote by {u*}, that converges in C?(U’) to some function
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u € C?%(U"), for any U’ CC U. By construction of this sequence of solutions to (2.33)), this
function u must satisfy the equation Lu = f in U.

Step 2: It remains to show the limit function satisfies u = g on OU.
Obviously, u € C'(U) and we show lim,__,,0 u(z) = g(2°) for each boundary point 2° €
OU. So pick any 2° € OU. Consider the function

w(z) = e BP° _ o—Blz—yl

where 5 > 0 is a constant to be determined later, and B,(y) is the exterior ball as guaranteed
by the exterior sphere condition. Note that w(z) is a barrier function because it satisfies the
following,

1. w(z°) =0 and w > 0 in U\ {2°};
2. we C*(U) and Lw > 0.

As ¢ > 0 and if we fix § sufficiently large enough, we obtain Lw > ¢ > 0 for some constant
c. Now, by continuity, for each € > 0 there exists a ball Bs(z°) such that

lg(z) — g(2°)| < € for all x € Bs(z°) N U.

Since w is bounded from below away from zero on U\Bs(z?), we can find a large enough
constant C' > 0, depending on ¢, such that

—Cw(r) + g(2°) — e < g(x) < Cw(z) + g(2°) + ¢ for all z € U,
so for all large enough k,
—Cw(z) + g(z°) — e < gr(v) < Cw(x) + g(2°) + € forallz € U.
From Lw > ¢ > 0, for suitably large constant C' > 0, we get
L(—Cw(z) 4 g(z°) — €) < Lu*(2) < L(Cw(x) + g(2°) +¢) for all z € Uy.
Thus, the weak maximum principle implies
—Cw(z) + g(2°) — e <uf(z) < Cw(x) + g(a®) + ¢ for all 2 € Uy
Sending k — oo yields
—Cw(z) + g(2°) — e < u(r) < Cw(z) + g(2°) +€ forall z € U.
Therefore

9(z") — e < liminf u(z) < limsupu(z) < g(2°) + ¢

0
Tr— T )IO

and thus
lim u(z) = g(2°)

z—x0

and because z° was chosen arbitrarily, this confirms u = g on AU thereby finishing the

proof. n

81



2.8 Sub-Supersolution methods

Let U be a bounded C?® domain in R with 0 < a < 1 and suppose f is a C' function
in U x R. The following technique constructs a sequence converging to a desired C%<(U)
solution of the semilinear problem

{ —Au = f(x,u) in U,

u=20 on OU, (2.34)

provided we can find a subsolution u and a supersolution @. That is, u, 7 € C**(U) such that
—Au < f(z,u) in U, u <0 on dU, and —Au > f(x,u) in U, u > 0 on 9U. We then invoke
compactness properties of the Holder spaces, which requires we make use of the classical
Schauder regularity estimates. We shall only reference the regularity estimates required here
for the sole purpose of establishing our existence results; however, a detailed examination of
regularity theorems along with their proofs will be provided in the next chapter.

Theorem 2.21. Let u (and, resp., u) belong to C**(U) and is a subsolution (and, resp.,

supersolution) of ([2.34) such that uw <. Then there exists a solution w € C>*(U) of (2.34)
such that u <u <wuin U

Proof. Set

m =infu and M = supu.
u U

Pick A > 0 large enough so that
A> =0, f(z,2)

for any (z,2) € U x [m, M].

Our strategy is to construct a compact sequence {uy}7>, whose limit is the desired
solution.
Step 1: We start by letting ug = u. For any ug, k = 0,1,2,..., we suppose u; € C>*(U)
is a solution of

—AukH + )\Uk+1 = f(l’, uk) + )\uk in U, (2 35)
Ugt1 =0 on OU. ’
We claim for all k,
u<up, <wu in U. (2.36)

This is obviously true for £ = 0. Proceeding by induction, suppose the claim holds for some
integer k£ > 0. Observing that

so by the mean-value theorem, there holds

f(,u) = @, u) + Au, — ) = (0:f (2, 2) + A) (u, — w)
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for some value z between u(z) and u(z). Hence

{ —A(ugr —u) + Mugyy —u) 20 in U, (2.37)

Ugy1 —u >0 on OU.

Applying the maximum principle yields w1 > w in U. Likewise, similar arguments will lead
to ugyy < win U. That is,

m < ug(zr) <M forany x € U and k=0,1,2,....
Step 2: We also prove that

Sup Suy<uz< ... <

IS

The argument basically mirrors the previous one. Namely, we assume

IN

Uu<u Sup < U SU ST

for some integer £ > 0. In view of (2.35]) and the mean-value theorem, we get

{ —A(U/k+1 — Uk) + )\(uk+1 - uk) >0 in U’ (238)

Ugy1 — up > 0 on OU.

The maximum principle implies that ug.1 — ux > 0 in U and this proves the claim.

Step 3: From the monotonicity and boundedness of {uy}72,, there exists a function u in
U such that uy(z) — u(x) for each z € U. Noting that the right-hand side of the PDE in
is uniformly bounded independent of k, the global C*® Schauder estimate (see Section
implies that ||uy|| 1) < C for some constant C' > 0 depending only on n, A, m, M and
U and therefore independent of k. Hence, that same right-hand side of is uniformly
bounded in the C** norm independent of k. The global C** Schauder estimates (see Section
D reveal [[ug|cz.a@) < C for some constant C' > 0 depending only on n, A\,m, M and U.
By the Arzela-Ascoli theorem, we may extract a subsequence uy, of u;, such that uy, — u in
C?(U). This limit function u is a solution of that satisfies the desired properties. [J

2.9 Calculus of Variations I: Minimizers and Weak So-
lutions

Another important approach to establishing the existence of weak solutions to elliptic equa-
tions is through variational methods. This is especially important since if we are searching
for weak solutions of semilinear equations, Lu = f(x,u), then the Lax-Milgram theorem no
longer applies. Variational methods are often used to circumvent this issue. The key idea
is to carefully identify an associated energy functional of the elliptic equation whose critical
points are indeed weak solutions of the elliptic problem.
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Remark 2.10. Although variational methods are used to find weak solutions, elliptic regu-
larity theory often ensures that weak solutions are actually strong or classical solutions.

We begin with a simple example for the sake of illustration. Consider

—Au= f(x) inU,
{ u=20 on OU, (2.39)

and consider the functional
1
J(u) = 5/ |Dul|? dz — / f(x)udz, v € Hy(U). (2.40)
U U

Remark 2.11. In general, we will consider the semilinear case when f = f(x,u) case. In
the special case where f(x,u) = |u|P~ u, then we get the problem
—Au = |[uflu U,

{ u=0 on OU. (2.41)

FEquation (2.41)) is often called the Lane-Emden equation. It serves as the prototypical semi-
linear equation, and it is the model that we will study in great detail throughout these notes.
Indeed, the exponent p has important implications in both the quantitative and gqualitative
properties of solutions and there are three primary cases to consider. In particular, we say
n+2 _ nt2

the equation 1is subcritical, critical or super-critical, respectively, if p < 5=, p = "5
n+2

P>

or

We now show that if u is a minimizer of this functional J(-) in the class of H}(U), then
u a weak solution of . Let v be any function in H}(U) and consider the real-valued
function
g(t) = J(u+tv), teR.

Since w is a minimizer of J(-), the function ¢(¢) has a minimum at ¢t = 0, and thus we must
have

d
0=4(0) = Ej(u—l—tv)

I

t=0

where explicitly,

J(u+tv):%/U|D(u+tv)|2d:)s—/Uf($)(u+tv) iz,

and
%J(u—l—tv) :/UD(u—i—tv)'Dvdx—/Uf@)de-

Hence, ¢’(0) = 0 implies
/ Du - Dvdx — / f(z)vdz =0, for all ve Hy(U),
U U
and so u is a weak solution of ([2.39)).
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Remark 2.12. The first derivative g'(0) is often called the first variation of J(-). In the
next chapter, we develop the regularity theory for the weak solutions of such elliptic problems.
In particular, it follows that the weak solution of obtained by our variational method
s a classical solution provided f is reqular enough, e.g., it is Hélder continuous.

Clearly, for u to be a weak solution it need not be a minimum; it can be a maximum or

saddle point of the functional, or generally any point that satisfies

d

This motivates the following definition.

t=0

Definition 2.6. Let J = J(-) be a functional on a Banach space X .

(a) We say that J is Frechet differentiable at u € X if there exists a continuous linear map
L: X — X* satisfying: For any € > 0, there is a 6 = §(e,u) such that

|J(u~+v) = J(u) — (L(u),v)] < €||v||x whenever ||v||x <.
The mapping L(u) is commonly denoted by J'(u).
(b) A critical point of J is a point at which J'(u) = 0; that is,
(J'(u),v) =0 forall veX.

We call J'(u) = 0, and the PDE associated with this distribution equation, the Euler-
Lagrange equation of the functional J(-).

Remark 2.13. One can verify that if J is Frechet differentiable at u, then

, o Juttv) = Jw)  d
(J'(u),v) = th—H}O ; = EJ(qutv) Y

More generally, given the Lagrangian L : R® x R x U — R with L = L(p, z,z) and
using the notation
D,L = (Ly,,...,Ly,,),
D.L =1L,
D,L=(Ly,...,L,),

we may consider the functional

J(u) :/UL(Du(x),u(x),x) dx.

As before, we may compute the Euler-Langrange equation associated with this functional
J(+) to be the divergence-form elliptic equation

- Z(Lpi(Du, U, )y, + L(Du,u,z) =0 in U.
i=1
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Although we will mostly focus on the special case

Lp,22) = Slpl? — f(2), (242)

which corresponds to the functional , the results we cover extend to more general
Lagrangians under some coercivity and convexity assumptions on L (see Chapter 8 in [9]).
We state these general conditions and the accompanying variational existence results at the
end of the next subsection. There we will first consider the model example and provide
the proof of the main existence result in this case. We shall omit the proof for the general
case though they are very similar.

2.9.1 Existence of Weak Solutions

We prove the following theorem.

Theorem 2.22. Suppose that U C R" is a bounded domain with smooth boundary OU. Then
2n
for every f € Ln+2(U) with n > 2, the functional

1
J(u) = —/ |Du|2dm—/f(3:)ud:v
2 Ju U
possesses a minimum uy € HY(U), which is a weak solution of the boundary value problem

—Au= f(x) inU,
{ u=~0 on OU. (2.43)

Proof. Let u; be a minimizing sequence, i.e.,

inf J(u)= lm J(uy).

weHL(U) k—00
Our goal is to show there does exist a function uy € H(U) such that

J(up) = lim J(ug) = inf J(u),

k—s00 weHL(U)

and as discussed earlier, ug is indeed a weak solution of the boundary value problem ([2.43]).
To prove the existence of a minimum of the functional J, there are three main ingredients
to verify: the functional J is

1. bounded from below,
2. coercive, and

3. weakly lower semi-continuous on Hg(U).
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1. We prove that J is bounded from below in H := H}(U) if f € L*(U). From Poincaré’s
inequality, we endow the following equivalent norm on H:

1/2
|WWw=(/WDm%M)
U

Thus, by Hélder and Poincaré’s inequalities, we have

1 9 1 s C? 9 C? 9
T > Sl = Clllal sy = 3 (ells = O zn) = S ey = =1 e

2. Observe that a function bounded below does not guarantee it has a minimum. Take, for
instance, ﬁ on the real line. For a given minimizing sequence, we must make certain that
the sequence does not “leak” to infinity. This motivates our need for a coercive condition.
That is, if a sequence {uy} tends to infinity, i.e., ||ug||z — oo, then J(ux) must also become
unbounded. In fact, it is clear that J(uy) — oo as ||ug||g — oo for our specific problem.
This implies that a minimizing sequence would be retained in a bounded set; that is, any
minimizing sequence must be bounded in H.

By the reflexivity of the Hilbert space H and the weak-x compactness of the unit ball,
the minimizing sequence has a weakly convergent subsequence, we still denote {ux}, in H
with limit point ug € H. We shall show that ug is a minimum point of J.

3. We prove J is weakly lower semi-continuous on H.

Definition 2.7. We say a functional J(-) is weakly lower semi-continuous on a Banach
space X if for every weakly convergent sequence

up — ug n X,

we have
J(up) < liminf J(uy).
k— o0

Clearly, it holds from the definition that J(ug) > liminfy,_, . J(ug). Thus, if J is weakly
lower semi-continuous, then J(ug) = limg_,, J(ux). Hence, uy is a minimum of J and this
completes the proof of the theorem provided we show J is weakly lower semi-continuous on
H. Note that since f € Ln%(U), Hélder’s inequality implies that u — [, f(z)udz is a
continuous linear functional on H and thus,

/f(a:)uk dx — / f(z)ugdx as k — oo. (2.44)
U U

From the algebraic inequality a? + b? > 2ab, we get |Duy|? + |Dug|* > 2Dug - Duy, or

Duy|* dz + Dugl?*dx > 2 | Dug - Duy, dz,
|
U U U
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which after subtracting 2 fU | Dug|? dx on both sides of this inequality yields

/ | Duy|? do > / | Duo|? dz + 2/ Duy - (Duy — Duy) dzx.
U U U

This leads to
lim inf/ | Duy,|* dx > / | Dug|? du,
U U

k—o0
since
/Duo-(Duk—Duo)dx — 0 as k — o0.
U
Combining this with ([2.44]) yields the desired result. O

In general, assume 1 < ¢ < oo is fixed, choose some prescribed boundary condition g and
define the admissible set

A={wecW"(U)|w = g on U in the trace sense},

and suppose L : R" x R x U — R with L = L(p, z,7) satisfies the following coercivity
condition:
There exist constants o > 0, 5 > 0 such that

L(p,z,z) > alp|? — B forall peR" zeR, z € U. (2.45)

This condition ensures that J[w] > 5HDwH%q(U) — B|U]| for some constant § > 0, which in
turn guarantees that J{w] — oo as || Dw|| @) — 0o. Moreover, J(-) is also weakly lower
semicontinuous provided that L is bounded from below and convex in the variable p. Hence,
we can use a similar approach as before to get the following result.

Theorem 2.23. Suppose L is convex in the variable p and satisfies (2.45)), and also suppose
the admissible set A is non-empty. Then there exists at least one function u € A satisfying

J[u] = min Jw].

weA

Furthermore, this minimizer is unique if L = L(p,x) does not depend on z and there
exists 0 > 0 such that

> Ly, (p.2)6i&; > 01 for p, € €R™, z € U.

ij=1

88



2.9.2 Existence of Minimizers Under Constraints

Using a similar variational approach, we establish the existence of weak solutions for the
subcritical Lane-Emden equation.

Theorem 2.24. Suppose that U C R" is a bounded domain with smooth boundary OU and

letl<p< Z—fg Then there exists a non-trivial weak solution uw € Hy(U) of the semi-linear

Dirichlet problem

(2.46)

—Au=|ufP~tu inU,
u=20 on OU.

Remark 2.14. We must be careful in setting up our variational procedure for this problem.
For ezample, we can naively consider the functional

1 1
J(u) = -/ Duf? dz — —/ P da.
2 U P —+ 1 U
It is not to difficult to show that

d
4 ¢
g/t

= / Du - Dv — |uP" uv da.
t=0 U

Therefore, a critical point of the functional J in H := H}(U) is a weak solution of (2.46)).
However, the functional J is not bounded from below in H. To see this, fit w € H and

consider
t2 thrl
J(tu) = —/ |Dul? dx — / lu|Ptt da.
2 Ju p+1Jy

Since p+1 > 2, we see that J(tu) — —oo as t — oo. To get around this problem, we
choose a different functional with constraints.

Proof. Set
1
I(u) = —/ | Dul|? dx
2 Ju

under the constraint
M :={ue H:Gu):= / |u|P*t dw = 1}.
U

We seek minimizers of I in M. Let {ux} C M be a minimizing sequence. It follows that
Ji |Dug|? dz is bounded so that {u;} is bounded in H. By the weak-* compactness of
bounded sets in the reflexive Hilbert space H, u; converges weakly to some ug in H. Thus,
the weak lower semi-continuity of the functional I implies that

I(up) < liminf I(ug) =: m. (2.47)

k—o0
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Since p+1 < %, the compact Sobolev embedding theorem implies that H'(U) is compactly
embedded in LPTY(U). Therefore, u;, converges strongly to ug in LPTY(U), which implies
ug € M since

1= / lug|PT da —>/ luo[Pt dr as k — oo.
U U

Thus, I(up) > m. Combining this with yields I(up) = m. This proves the existence
of a minimizer ug of I in M. It remains to show that ug, multiplied by a suitable constant if
necessary, is a non-trivial weak solution of . This entails identifying the corresponding
Euler-Lagrange equation for this minimizer under the constraint, which is provided by the
following theorem whose proof is given on page 60 in [0].

Theorem 2.25 (Lagrange Multiplier). Let u be a minimizer of I in M, i.e.,

I(u) = min I (v).

veM

Then there exists a real number A such that
I'(u) = M\G'(u)

or

(I'(u),v) = MG'(u),v) for all ve H.

We are now ready to show the minimizer ug is a weak solution of ([2.46)) after a suitable
dilation. The minimizer ug of I under the constraint G(u) = 1 satisfies the Euler-Lagrange
equation

(I'(ug), v) = MG (ug),v) for all v € H;
that is,
/ Dug - Dvdx = )\/ [uo|P~tugv dx for all v € H.
U U

From this, we can choose v = ug so that

/ | Duo|? da
)\ = U

- ’
/ |[uo|PT d
U

and thus A > 0. Then we can set @ = aug where \/a?~! =1 since p > 1. Hence

/Dﬂ-Dvd:p:/ |a|P~ v da,
U U

so @ € H is a weak solution of ([2.46)). O
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2.10 Calculus of Variations II: Critical Points and Moun-

tain Pass Theorems

In the previous examples, we obtained minimizers to a given functional, which turn out
to be weak solutions to a corresponding PDE. More generally, we also showed that the
critical points of the functional are also weak solutions. In applications, however, there are
often situations were the functionals considered are not bounded above or below and so the
existence of local minima is no longer guaranteed. Fortunately, critical points may still exist
in the form of so-called saddle points. this section, we use the celebrated Mountain Pass
theorem of Ambrosetti and Rabinowitz (see [2]) and its variants to find such critical points.
In order to state and prove the Mountain Pass theorem, we first need to introduce some
definitions and an important deformation theorem:.

2.10.1 Deformations and Mountain Pass Theorem

Hereafter, H denotes a Hilbert space with inner product (-,-) and induced norm || - || and
I: H — R is a nonlinear functional on H.

Definition 2.8. We say I s differentiable at w € H if there exists v € H such that
Iw] = Iu] + (v,w — u) + o(|Jw — ul|) for w € H. (2.48)
The element v, if it exists, is unique and we write I'[u] = v.

Definition 2.9. We say I belongs to C*(H;R) if I'[u] exists for each uw € H and the mapping
I': H— H is continuous.

Remark 2.15. (a) The results we develop in this section hold assuming I € C*(H : R), but
for simplicity, we shall assume additionally that I' : H — H is Lipschitz continuous on
bounded subsets of H. Moreover, we denote by C the collection of all such I satisfying
these conditions.

(b) If c € R, we set
A.:={ue H|I[u] <c} and K.:={ue H|I[u] =c¢, I'lu] = 0}.

Definition 2.10. We say u € H s a critical point if I'lu] = 0. The real number ¢ is a
critical value if K, # ().

In general, H is taken to be an infinite dimensional Hilbert space, thus we need to impose
some sort of compactness condition.

Definition 2.11 (Palais-Smale). A functional I € C'(H;R) satisfies the Palais-Smale com-
pactness condition, or (PS) condition for short, if each sequence {ux}3>, C H such that
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(a) {I[ug]}32, is bounded,

(b) I'lug] — 0 in H,

is precompact in H. We will sometimes call such a sequence satisfying (a)-(b) a Palais-Smale
or (PS) sequence.

Similarly, if we replace (a) above with (a') I[ug] — ¢ for some ¢ € R, then we say
I satisfies the (PS). condition, and we call such a sequence satisfying (a’) — (b) a (PS).
sequence.

The following theorem states that if ¢ is not a critical value, we can deform the set A...
into A._. for some € > 0. The principle idea lies around solving an ODE in H.

Theorem 2.26 (Deformation). Assume I € C satisfies the Palais-Smale condition and
suppose that K. = (). Then for each sufficiently small € > 0, there exists a constant § € (0, €)
and a deformation function

neC([0,1) x H; H)

such that the mappings
m(w) = n(t,w) for t€[0,1], ue H

satisfy
(i) no(u) =u for ue H,
(it) m(u) =u for u g I7H([c—¢ c+6),
(111) I[n(u)] < Iu] for t €[0,1], u € H,
(iv) m(Acts) C Acs.
Proof. Step 1: We claim that there exist constants o, e € (0,1) such that

| I'[u]]| > o for each u € Apye — Ao (2.49)

To see this, we proceed by contradiction. Assume ([2.49)) were false for all constant o, e > 0.
Then there would exist sequences o, — 0 and ¢, — 0 and elements

Up € Aoy — Ae_e, with | I'[ug]|| < o%. (2.50)

According to the Palais-Smale condition, there is a subsequence {uy;}32, and an element
u € H such that u, — w in H. Since I € C'(H;R), implies that I[u] = ¢ and
I'lu] = 0. Hence, K. # () and we arrive at a contradiction.

Step 2: Now fix § such that

§ € (0,¢) and § € (0,0%/2). (2.51)
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Denote

A:={ue H|Iu| <c—e or I[u] >c+ e},
B:={ue H|lc—§<I[u] <c+d}.

Since I’ is bounded on bounded sets, we verify that the mapping u — dist(u, A) + dist(u, B)

is bounded from below by a positive constant on each bounded subset of H. Therefore, the

function,

dist(u, A)

g(u) = — : :
dist(u, A) + dist(u, B)

is Lipschitz continuous on bounded sets and satisfies

(u € H),

0<g<1l,g=0o0n A,g=1 on B.

Now set ¢ 0.1
1, ifte|0,1],
ht) = { 1/t, ift>1, (2.52)
and define the bounded operator V : H — H by
V() = —g(u)h([|I"Tu][[)I"[u] (u € H). (2.53)
Consider, for each u € H, the abstract ordinary differential equation
d
—n(t) =V (n(t t>0
{ Sn(t) = V(i) >0, 2.54)
n(0) = u.

Indeed, there exists a unique global solution n = n(t,u) = n(u) for t > 0, since V is
bounded and Lipschitz continuous on bounded sets. Moreover, if we restrict our attention
to the smaller interval ¢ € [0,1], it is easy to see that n € C([0,1] x H; H) and satisfies
assertions (i) and (ii).

Step 3: It remains to verify assertions (iii) - (iv).
There holds

%I[m(U)] = I'[ne(w)] - %m(u) = I'Ine(w)] - V(ne(u)) = —g(ne(w) ) (L [ne ()] DI Te ()]

(2.55)

In particular,

d
%I[nt(u)] <0 for ue H,tel0,1],

and this verifies assertion (iii).

Now fix any point u € A.,s. We claim that n;(u) € A._s, i.e., assertion (iv) holds. To
see this, if n,(u) ¢ B for some t € [0, 1], we are done. So, instead, assume that n,(u) € B for
all t € [0,1]. Then g(n;(u)) =1 for all ¢ € [0,1]. Hence, identity implies that

d

()] = =h( iy (@)D [ ()] (2.56)
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I |7'[(w)]]| > 1, then (249) and (Z52) imply that

d
@] = =1 (]| < —o*.
Likewise, if || I'[n:(w)]|| < 1, then (2.49)) and (2.52)) also imply that
d
4 i) < o2

These two inequalities, when combined with (2.51)) and (2.56]), imply
Im@)] < Iu] —0?* <c+5—0*<c—6.
This verifies the claim that 7;(u) € A._s and this completes the proof. O

With the help of the Deformation Theorem, we shall now prove the celebrated Mountain
Pass Theorem, which guarantees the existence of a critical point.

Theorem 2.27 (Mountain Pass). Assume I € C satisfies the Palais-Smale condition. Sup-
pose, in addition, that

(i) 1[0] =0,
(1) there exist constants a,r > 0 such that

Iu) > a if |lul| =,

(111) there exists an element v € H with

|v]| > r, I[v] <O0.

Then

¢ = inf max I{g(t)],

where

I':={g € C([0,1]; H) [ g(0) = 0, g(1) = v},
15 a critical value of 1.

Proof. Indeed, it is clear that ¢ > a. Now assume that ¢ is not a critical value of I so that
K. = 0. Choose a suitably small € € (0,a/2). According to the deformation theorem, there
exists a constant 0 € (0, €) and a homeomorphism 7 : H — H with

n(Ach&) - Acfé

and
n(u) =u if ug I ec—ec+e. (2.57)

94



Now select g € I' such that
max [[g(t)] < c+6. (2.58)

0<t<1
Then the composition

g=mneoyg
is also in I', since 7(g(0)) = n(0) = 0 and 7(g(1)) = n(v) = v as indicated in (2.57)). But
then implies that

max I[g(t)] < e¢—9,

0<t<1
and so
= inf Ilg)] <c—=96
¢ = inf max Ilg(t)] < c 4,
which is a contradiction. O

Remark 2.16. The rough picture of the result above is to view 0 € H (basin) surrounded
by a mountain range (the sphere 0B,(0) C H). We are assuming the elevation level of
I : H — R restricted to the mountain range is positive and bounded away from zero.
Assuming there is a location (the element v) outside the basin and mountain ridge whose
elevation is even lower, Theorem reveals the shortest path (mountain pass) across the
mountains starting from 0 to v produces the desired critical value and critical point.

2.10.2 Application of the Mountain Pass Theorem

We will prove the existence of at least one non-trivial weak solution to a general semilinear
boundary value problem in which the Lane-Emden equation is a special case. Namely,
consider the boundary value problem

—Au= f(u) inU,
{ u=20 on OU. (2.59)

We assume f is smooth, and for some 1 < p < ;%2 there holds for some positive constant

c, 3
F(2)] < O+ |2P), 1f(2)] < O+ |27 for z € R. (2.60)

If we denote ;
F(z) :/ f(s)ds and z € R,
0

we also assume that
0 < F(z) <~vf(z)z for some constant v < 1/2, (2.61)
and for constants 0 < a < A,

alz|PT < |F(2)] < Alz[P™ for z € R. (2.62)
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Remark 2.17. (a) Indeed, (2.62)) implies that f(0) = 0 and so uw =0 is a trivial solution of
2.59).

(b) It is easy to check that f(u) = |u[P™lu satisfies the above conditions.

Theorem 2.28. The boundary value problem (2.59) has at least one non-trivial weak solu-
tion.

The basic idea of the proof is to consider the functional
1
I[u] == / §|Du|2 — F(u)dx forue H, (2.63)
U

where H = Hj(U) with the induced norm coming from the inner product (u,v) = [,; Du -
Duvdzx, then show that the Mountain Pass Theorem applies. Therefore, the existence of
a non-trivial critical point of I implies the existence of a non-trivial weak solution of the
boundary value problem. To best illustrate the main ingredients of the proof, we introduce
the following lemmas.

Lemma 2.5. There hold I[0] = 0 and I belongs to the class C.

Proof. 1t is obvious that I[0] = 0. It remains to show that I € C. Consider the splitting

T = %||u||2 —/UF(U) do = L[u] + L.

Indeed, for u,w € H,
1 2 1 SRTI 1 2
hfw] = Sl = 5 lutw—ul? = Sljull>+(, w—u)+o w—ul = Hlul+(u, w—u)+o(lu—ul)

Therefore, I; is differentiable at u with I{[u] = u, and thus I; € C. Now we show I € C.
First we make some preliminary observations. Recall that the Lax-Milgram theorem states
that for each element v* € H~'(U), the boundary value problem,

—Av=v* inU,
{ v=0 ondU. (2.64)
has a unique solution v € Hg(U). Write v = Kv* so that
K:H*U)— Hy(U) (2.65)

is an isometry. In particular, recall that if w € Ltz (U), then the linear functional w* defined
by
(w*, u) := / wu dr for u € Hy(U)
U
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belongs to H~'(U). Here we shall abuse conventional notation and say that w belongs to
H~'(U). In addition, the subcritical condition implies that p(;2%) < -2% and so f(u) belongs

to Lntz (U) € HY(U) provided that w € H}(U). The crucial step here is that
] = K[7(w)] (2.66)
To see this, notice that
Fla+b) = F(a)+ fla)b+ /01(1 — $)f'(a + sb) dsb?
and thus for each w € H}(U),
Lw] = /F( )dx = / F(u+w—u)da::/UF(u)+f(u)(w—u)dx+R
= I(u /DK D(w — u)dx + R,
where the remainder term R, according to , satisfies

|R| < C’/ (1 + |ulP + Jw — uf N |w — ul* dv
U

p—1 2
§C1(/ ]w—u|2+\w—UIp+1dx) +02</ ’ulerl d:c)p+1</ ‘w_u’erldx)p-&-l.
U U U

Hence, since p 41 < =%, Sobolev embedding implies that R = o(||w — ul|). Therefore,
Lw] = Llw] + (K[f(u)], w = u) + of[|w — ul]).
Lastly, if u,v € Br,(0) C Hy(U), then
13[u] = L]l = 1KLf (w)] = K[f@)llmy0) = 1f(w) = F@)la-10) < 1 () = FO)I 20,
Furthermore, and Holder’s inequality imply

1) = FOl, 2y, < O( [ (1™ 4 ol =) d)
(

<O [ (a4 o Dl = o) de) o],
U 2(0)
< O~ ol oy

< O(D)u ol

This shows that I, : Hj(U) — H}(U) is Lipschitz continuous on bounded sets and thus,
I, € C. This completes the proof of the lemma. n
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Lemma 2.6. The functional I € C satisfies the Palais-Smale condition.

Proof. Suppose the sequence {uy}2, in Hj(U) satisfies
(1) {Iux]};2, is bounded, and (i) I'[ux] — 0 in Hy(U).

Obviously, we have that

Thus, for each € > 0, we have
(I [w], v)] = ‘/ Duy.- Do — flugvde| < elo]] for ve HY(D)
U
for sufficiently large k. Namely, if we take v = uy and set € = 1, then we get
| [ 10wl e do] <
U
for sufficiently large k. From ([2.67]), we have that
1
(3 el - / Flug) dr) < C < 00
2 U
for all k. Hence, we deduce from above and (2.61)) that

uww§c+2LFwwwsc+%me+mm»

(2.67)

(2.68)

As 2y < 1, we can absorb the last two terms on the right-hand side by the left-hand side to

get that {u,};2, is bounded in Hj(U). We can then extract a subsequence {uy,}

521, that

converges weakly to u € Hg(U). Hence, uy, — u in LPT(U) since p + 1 < 2% by the
compact Sobolev embedding. But then f(uy,) — f(u) in HY(U) and so K[f(ux,)] —
K[f(u)] in Hy(U). Consequently, from (2.68)), we arrive at the desired conclusion that

ur, — uw in Hy(U).

Lemma 2.7. There hold the following statements.

(a) There exist constants r,a > 0 such that

Iu] = a if [ju] =r.

(b) There exists an element v € H}(U) with

||| > r and I[v] <O0.

98

(2.69)

]



Proof. (i) Suppose that v € HJ(U) with ||u|| = r for some r > 0 to be determined below.

Then
2

r
Iu] = Liju] — Llu] = 5 L[u].
By (2.62)) and Sobolev embedding, as p + 1 < %, we obtain that

(p+1)(n—2)

L[] < c/ P+ dr < 0(/ M= dx) < Ol < orP,
U U

Hence,
2 2

I[u]E%—C’r”+12%:a>O,

provided that r» > 0 is chosen small enough, since p + 1 > 2.
(ii) Fix some non-trivial element u € H}(U) and write v = tu for ¢ > 0 to be determined

below. Then, using (2.62), we get

Iv] = L[tu] — Ltu] = 211 [u] —/

F(tu)dx < t*1[u] — atp“/ |ulP* dx < 0
U U

for t > 0 large enough. O]

Proof of Theorem [2.28] Indeed, Lemmas [2.5 verify all the hypotheses in the Moun-
tain Pass theorem. Hence, the Mountain Pass theorem implies there exists a non-trivial
function u € H}(U) with

I'lu] = u— K[f(u)] = 0.

In particular, for each v € H}(U), there holds

/UDu-Dvdx:/Uf(u)vdm,

and so u is a non-trivial weak solution of the boundary value problem ([2.59)). m

2.10.3 Linking theorems and their applications

The Mountain Pass Theorem turns out to be a special case of an even more general family
of min-max techniques called linking theorems. Here we shall assume I € C'(H;R) and
let C be a non-empty collection of subsets A C H such that (1) ¢ := infaccsup,cq [(u) is
finite, and (2) if n denotes a deformation formation (obtained from a descent flow of I), then
n(A) € C for all A € C. Then it follows that c is a critical value of I provided that I satisfies
the (PS). condition.

Below, we let N be a manifold with boundary N, C' is a non-empty subset of H and
I'={h € C(N;E)|h=1id on ON}. We first define the meaning of ‘linking’ sets.
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Definition 2.12. We say that ON and C' link if
CNh(N)#£0 forallhel.

Remark 2.18. As a precursor to applications below, consider the standard example: let H =
VW be a Hilbert space, where V,W are orthogonal closed subspaces and dim(V') = k < oo.
Given e € W and R > 0, we consider the k + 1 dimensional manifold with boundary,

N={z=v+se|lveV || <R0<s<1}.
Letting C' be the sphere B,.(0) C W, i.e.,
C=A{w e W|[w|=r},

then ON and C link. This can be verified using a topological degree argument but the details
are left to the reader.

Definition 2.13. Define
¢ := inf sup I (h(u)). (2.70)

hel yenN
This value ¢ is called the linking level of I (with respect to N and C').

We are now prepared to introduce the linking theorems and their connection to critical
points of I. Again, let I € C'(H;R) and let N and C' be subsets of H such that 9N and C
link. For the rest of this subsection, we assume the following.

(L1) I is bounded from below on C' i.e.,

p = iggl(u) > —00,

(L2) p> B :=sup,con I(u).
If ON and C' link so that C N A(N) # @ for all h € T, then we easily see that

> i > 1 = p.
B Rt A

That is,
c > p.

Theorem 2.29. Let ON and C link and suppose I € C*(H;R) satisfy (L1)—(L2). Moreover,
assume that I satisfies the (PS). condition with linking level ¢ as defined in (2.70). Then c

is a critical value of I such that ¢ > p.

Proof. The proof is similar to that of Theorem [2.27] Proceeding by contradiction, we assume
that the set K, of critical points at level ¢ is empty. As in the proof of the deformation lemma,
there exists a deformation function 7 and a suitably small § > 0 satisfying
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(1) n(Acys) C Aces,

(ii) n(u) = u for all u € Ag.
From the latter property, we can show noh € I for each h € I'. In particular, if u € 9N and
I(u) < 3, then the second property implies 1o h(u) = u, i.e., the composition is the identity
on the boundary. By definition, we can pick h € I' such that

sup I(h(u)) < c+ 4.
ueN

From (i) we deduce that
supI(noh(u)) <c—9,

ueN
but this contradictions with the definition of the linking level ¢, since no h € T. O

Remark 2.19. The Mountain Pass Theorem (see Theorem is a special case of the
Linking Theorem of Theorem|2.29. To see this, just takev € H, N = [0,v] := {tv |0 < ¢ < 1}
so that ON = {0,v}, C = 0B,(0) = {u € H|||ul]| =7} and T = {h € C([0,v]; H) h(0) =
0, h(v) = v}. Indeed, the sets ON and C' link provided that ||v|| > r.

Theorem 2.30. Let H =V & W be a Hilbert space, where V. W are closed subspaces and
dim(V) =k < oo. Suppose that I € C'(H;R) satisfies the following.

(L1’) There exist p,r > 0 such that
J(w) > p forallw e W with |w| =r,

(L2°) there exist R > 0 and w € W with ||w|| > r such that, letting
N={u=v+tw|ve V|| <R0<t <1},
there holds
I(u) <0 for allu e ON.

Further assume I satisfies the (PS). condition. Then I has a non-trivial critical point
z at level ¢ > 0.

We now apply the previous results to establish some existence result to a familiar boundary-
value problem. To illustrate how the Linking Theorems enhance the Mountain Pass Theorem,
we recall the following result, which is a special case of Theorem [2.28]|

Theorem 2.31. Let U C R" be a C, open and bounded domain, and suppose 1 < p <
2*—1:=(n+2)/(n—2) and X\ < Ay, where )\ is the principle eigenvalue of —A in Hg ().
Then the boundary-value problem,

{ —Au =X u+ [ulflu  in U,

u=0 on OU, (2.71)

admits a positive weak solution.
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The above result is a consequence of the Mountain Pass Theorem. However, with the
help of Theorem [2.30, we improve the result by removing the restriction that A lies below
the first Dirichlet eigenvalue for the Laplace operator.

Theorem 2.32. Let U C R™ be a C*, open and bounded domain, and suppose 1 < p < 2*—1
and A € R. Then the boundary-value problem (2.71) admits a non-trivial weak solution.

Proof. Let H := H}(U) and set

1 A 1
I(u):§/UIVu]2da:—§/Uu2dx—m/[]\u]p+ldx

where A is any real number. Recall, we let A} < Ay < A3 < ... and @1, 2, @3, . .. Tepresent
the Dirichlet eigenvalues and associated eigenfunctions of —A in H. Therefore, there is a
natural k such that A\ < A\ < \gyg.

Our goal is to show for each such A\, < A\ < A\iy1, we can apply Theorem with

V= span{cpl, P2y - - 790k} and W = VJ_?

the orthogonal complement of V' in L*(U). We adopt the same choices for the subsets N
and C in Remark 218

We verify (L1') holds. Indeed, if w =377, cip; € W and ||w||g = o(1), then

1 A 1 A
mw=§§;ﬁ@—xg+dwmnz—0—x;)+wmm>
This verifies the first property. It remains to verify (L2') holds. First, we take any finite
dimensional subspace V' of H. For v/ € V', ||v/||g = 1, there holds

R (2.72)
Since p > 1 and V"’ has finite dimension, from (2.72)) we can find R > 0 such that I(Rv") < 0
for all such v € V' with ||v'||g = 1. Particularly, we can find R > r > 0 and w € W with
|w||z = R such that I(v+ tw) < 0 if ||jv + tw]] > R. We can also check that on the three
sides of ON given by {v + tw| ||v|]|x = R} N{v + Rw}, we have I(u) < 0.

However, for v = Zle cip; € V, we also have that

1 1
I(RV) = 532 — §A2R2|yv’||iQ(U) —

k
loll2y = DA > N ol
1=1

and thus
1

1) < ol = SolEe < 5 (1 - 5 ) ol <0,
This verifies the second property holds. The verification that [ satisfies the (PS). condition
is similar to what was done in the proof of Theorem [2.28
Finally, we apply Theorem to obtain a non-trivial critical point of I in H, which
provides the desired non-trivial solution of . O
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2.11 Calculus of Variations III: Concentration Com-
pactness

In our variational approach for establishing the existence of solutions to semilinear equa-
tions, we exploited the compact Sobolev embedding due to the subcritical exponent p. In
the critical setting, however, this compactness property fails. Fortunately, we can apply
the principle of concentration compactness to recover the compactness of the minimizing
sequence in the strong topology of H}(U). In Chapter @, we look at this precise problem of
concentration phenomena and how it relates to the breakdown of the compactness of critical
Sobolev embeddings. More precisely, there we examine finding extremal functions to a con-
strained energy functional for a critical Sobolev inequality. Then we use the concentration
compactness principle to recover strong convergence of a minimizing sequence to obtain a
minimizer for the functional.

For now, we illustrate how to apply the concentration compactness principle to estab-
lish an existence result for a model elliptic problem. Namely, we consider the stationary
Schrodinger equation

_ — p—1 : n
{ Au = A u+ |ulP~'u in R™, (2.73)

limm_}oo u(iL‘) =0.
where n > 3, A <0 and p > 1.
We first begin with some background and motivation. The well-known nonlinear Schrédinger
(NLS) equation is given by

{ 00 + Av = £[vo (2,1) in R x (0, 00), (2.74)

v(z,0) = ¢(x) in Hy(R"),

where solutions are understood in the usual weak or distributional sense. We say the non-
linearity in equation (2.74) is focusing or defocusing, respectively, if the right-hand side is
—|v|P~ v or +|v|P~tw, but we shall only concern ourselves with the focusing case. In either

case, however, a key feature of the NLS equation is that mass and energy are conserved
quantities, i.e., M(v(t)) = M(v(0)) and E(v(t)) = E(v(0)) where

M) = [ (a0 ds

and )

E(v(t)) = / |Dv(x, t)Pde £ —— [ |v(z,t)|Pt da.
In the focusing case, we may search for solitary wave solutions of the form v(x,t) = u(x)e=*
where u is some function in H'(R") and A < 0. Then, it is simple to see that u satisfies

—Au = Au+ [ulP"'u in R™ (2.75)

103



Indeed, there does exist solutions to equation whenever 1 < p < (n+ 2)/(n — 2),
and this can be established through various ODE or variational approaches. For the sake of
illustration and to keep our presentation simple, we employ the concentration compactness
principle of P. Lions to solve a closely related variational problem. Namely, for n > 3 and
1 < p<1+4/n, we look for minimizers of the energy functional

1 1
E(u) = 5/ |Du|? dw — T lu|Ptt da
n P R~

under the constraint ||u||2 = A for a fixed A > 0. More precisely, we consider
I = inf{E(u) |u € H'(R"), ||lul|3 = \}. (2.76)
We establish

Theorem 2.33. Letn >3 and let p € (1,14 4/n) and A > 0 be arbitrary. Then Iy > —oo
and for any minimizing sequence {u}>, C H'(R™) of (2.76), there exists a sequence of
points {yr}32, C R™ such that the translated sequence {ux(- + yi)}22, is relatively compact
in HY(R™) and whose limit is a minimizer of E().

Remark 2.20. (a) If 1 <p < 144/n and for any A > 0, we have that Iy < 0 and is finite.

(b) Unfortunately, if p > 1+4/n, then I, = —oo for any A > 0, i.e., the energy functional is
no longer bounded from below (and this illustrates the restriction onp). For14+4/n <p <
(n+2)/(n—2), we can circumvent this issue by minimizing a slightly different functional
(see Theorem [2.41). For another similar problem that minimizes the Dirichlet integral
over an appropriately chosen admissible set, we refer the reader to Section[6.3 in Chapter

(4l

(c) These minimizers for E(-) are indeed weak solutions to equation (2.75) but for a com-
pletely different parameter \. In particular, the parameter X in the problem for I, (A > 0)
and equation (2.75) (A < 0) are not the same and are opposite in sign.

We shall make use of the following concentration compactness principle which we state
without proof [22] 23]. Essentially, this proposition asserts that there are three possibilities
when given a bounded sequence in H'(R™). The usual strategy for our variational prob-
lem is to verify that the other two “bad” scenarios cannot happen and that only strong
precompactness of the sequence must hold.

Proposition 2.2. Let A > 0 and suppose {uy}2, is a bounded sequence in H'(R™) such
that |lugll3 = X\ for k =1,2,3,.... Then there exists a subsequence {uy,;}52, satisfying one
of the following three properties.
(I) (Compactness) There exists {y;}32, C R"™ such that for any € > 0, there exists R > 0
such that
/ |ukj|2dx2)\—eforjzl,2,3,....

Yj +Br (O)
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(II) (Vanishing) For all R > 0,

lim sup / |ug,|* dz = 0.
I yeR™ Jy+ Bg(0)

(I1I1) (Dichotomy) There exist a € (0,)) and bounded sequences {uj}32, and {u3}52, in
HY(R™) such that

2n
. 1 2 .
(a) lim g, = () + )|, — 0 for 2 < q < ——;

(b) a= }LHOIO Hujl'||2L2(Rn) and A\ —a = jli—>I£lc> HU?”%Q(R”);

(c) liminf/ {|Duk]-|2 — [Duj|* - |Du]2|2} dx > 0.
J—00 R™

Remark 2.21. Roughly speaking, only three situations can occur for such a bounded sequence
of functions. FEither (1) the sequence of functions concentrate near the points {y;}, (II) such
concentration does not occur at any of the points {y;}, or (III) some fraction A € (0,1)
concentrates near some points {y;} while the remaining part spreads away from these points.

We shall also require the following intermediate result.
Lemma 2.8. There holds Iy < I, + I\_o for any A\ > 0 and a € (0, \).

Proof. Let o € [A\/2,\) and 0 € (1,\/a]. Then

Iyo = inf E(u) = inf E(0"?u)
wEH (R ull25 ) =00 WEH Rl 2 gy =0
pp—1)/2
_9 inf {E(U) - ful”™* dm}
we HA (B Jul2, 0 = Pl e
<0l,,

where we used the fact that I, < 0 as indicated in Remark [2.20, Hence,

A A —«

]A< ]a:]a+—]a§1a+lk—a
[0

«

Proof of Theorem [2.33. We divide the proof into three main steps.

Step 1: Let {u;}?2, be a minimizing sequence for the energy functional E(-). The bound-
edness of the minimizing sequence follows immediately since the sequences {E(ug)}32, and
{1 Du|z2mny 32, are bounded. From the concentration compactness principle of Proposi-
tion [2.2] there are three possibilities that may occur. The goal is to show that (II) vanishing
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and (III) dichotomy do not happen and that (I) compactness occurs. Once this is verified,
the result follows accordingly. Namely, as done in the preceding sections, we may exploit the
structure of the energy functional F(u) to show the strong precompactness of the minimizing
sequence, i.e., the translated subsequence given in (I) converges to some u € H'(R™) with
||u||L2(Rn) < A. As usual, the next step is to show that the limit point u is admissible, i.e.,
| w)|? Ze@n = A, but this is immediately deduced from case (I) of Proposition and we are
done. Thus, it only remains to show that (II) and (III) cannot happen.

Step 2: (III) dichotomy does not occur.
Assume the contrary. Let «; > 0 and §8; > 0 be such that Haju}H%Q(Rn) = « and
1851372 2y = A — . Then a;, 8; — 1 as j — oo and we have

E(u;) 2 E(u;) + B(u}) +7; = E(ajuj) + E(Bju3) +7;
where ’)/j,’}/; — 0 as j — oo. Hence,
]>\ = hm E(ukj) Z hm [E(oz]u]l) + E(ﬁju?)] 2 ]a + I)\_a,
Jj—o0 Jj—o0

but this contradicts with Lemma 2.8

Step 3: (II) vanishing does not occur.

Assume otherwise. It suffices to show that if (II) holds, then ||u, ||:’;,f+11 ®ny — 0 as
J — oo because then liminf;_ . F(u,) > 0 and we get a contradiction with the fact that
I, < 0. Choose an arbitrary R > 0. For any y € R", the Sobolev inequality yields

1 1 p+1+n—5(p+1) p+1
lalli s oy < COB (Il oy + Nl ey 1Dl ey )

Choose a sequence {z,}22, C R™ such that

R e + Bal0)}
r=1
and each point x € R" is contained in at most ¢ balls where ¢ is a fixed positive integer.
Then, noting that €; := sup, |lug, ||zL’§(12T+BR(O)) — 0 as j —> oo and applying the preceding
Sobolev inequality, we get

1
||Uk ||Lp+l(Rn Z ||U’k’] ||§,—;+1(3T+BR(O))
> 24+n—"2(p+1) (p+1
< CRY S { oo i + N 1550 Fomion 1D £ ) )
r=1
< CEjZ/ [ukj + [ Dug, [T dz < C&J‘HUMHU(RH) —0
r—1 ZT+BR(O)

as j — 0o, where we used Jensen’s inequality in the last line. This proves the claim.
Hence, u is a minimizer of E(-), i.e., E(u) = I, as defined in problem (2.76)). This
completes the proof. n
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2.12 Sharp Existence Results and A Priori Estimates

2.12.1 Sharp Existence Results
The Lane-Emden equation

We examine, in more detail, existence results and their accompanying Liouville theorems for
the semilinear problem

— = |ulPt i
{ Au = |ulP~'u in U, (2.77)

u=>0 on OU,

where, in this section anyway and unless we specify otherwise, we assume U is an open
domain, that is, U is an open connected subset of R™. Specifically, we discuss how the
existence results obtained earlier by the calculus of variations are optimal. We will also study
how the geometry and topology of the domain influences the existence and non-existence of
solutions. For instance, the existence result of Theorem is sharp in that the equation
admits no classical non-trivial solution in the super-critical case; thus, the only solution
is indeed the trivial one. We will later see that this no longer holds if the domain is not
star-shaped, e.g., if the domain is an annulus.

Theorem 2.34. Let p > (n+ 2)/(n — 2) and U C R"™ is a bounded open subset with
smooth boundary. Further suppose U is a star-shaped domain with respect to the origin. If
u € CHU)N CYU) is a solution of [2.77), then it must necessarily be the trivial solution
u = 0.

For completeness sake, we include the sketch of the proof, which centers on the following
Rellich-Pohozaev identity.

Proposition 2.3. Let U C R" be a bounded open domain with smooth boundary and star-
shaped with respect to the origin. If u € C*(U) N CYU) is a solution of [.77) with p > 1,

then
n— 2

1 n
Du2dm—|——/ Duf*(x - v)dS = /up+1dx. 2.78
[ 1pupar+3 [ pupa-vyas = = [ (2.78)

Proof. Multiplying the PDE by x - Du then integrating over U gives us
/(x - Du)(—A)udx = /(x - Du)|ulP~tu dz.
U U

Elementary calculations will show that the left-hand side becomes

2—n

1
/]Du|2dx——/ \Dul(z - v) dS.
n U 2 Jou

/U(:U - Du)(—=A)udx =
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Likewise, we calculate that the right-hand term becomes

1
/ |u|P~ u(z - Du) dx = ol Dlu[Pt! dx
U p U

1
S— /\u]p+1da:+—/ P (z - v) dS
U p+1 /o

p+1

__" /|u|p+1d;c.
p+1Jy

The identity follows immediately. m

Proof of Theorem[2.3], Assume otherwise; that is, u is a non-trivial solution of (2.77). If
we multiply the PDE by u then integrate over U, we obtain

/—uAudx:/ lu|P*t d.
U U

Then, integration by parts and the zero boundary condition imply that

/—uAud:c:—/ u—dS+/ |Du]2d:v—/ | Dul? dz.
U

Hence, we arrive at
/ |u|Ptt da :/ | Dul? da.
U U

Inserting this into identity (2.78)), we get

-2 1
( noon >/|u|p+1dx:—/ |Dul?(z - v) dS > 0. (2.79)
2 U 2 Jou

p+1

The inequality on the right is due to - v > 0 on U, since U is star-shaped with respect to
the origin. But this implies that p < (n +2)/(n — 2), which is a contradiction. O

For special domains this non-existence result can be improved to include the borderline
critical exponent p = (n+2)/(n —2). For instance, if U = Bg(0) is the ball of radius R > 0
centered at the origin, then 2 - v = R > 0 on 0Bg(0). In view of this and Hopf’s lemma, if
we take p > (n + 2)/(n — 2), then the inequality in becomes a strict one. Thus, we
can deduce that p < (n +2)/(n — 2) and get a contradiction. Hence, combining this with
our previous existence result for the subcritical case, we have deduced the following sharp
existence result.

Theorem 2.35. Let U = Br(0) for any R > 0 and p > 1. Then equation (2.46|) admits a
classical solution if and only if p < (n+2)/(n — 2).

It is noteworthy to mention that if U = R", then the role of the exponent p reverses.
Particularly, there holds the following sharp existence result.
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Theorem 2.36. Let p > 1 and consider the Lane-Emden equation in the whole space

o — p—1 : n
{ Au = |JulP~tu  in R™, (2.80)

u>0 m R™,
Then

(a) Equation (2.80) admits a positive classical solution whenever p > (n+2)/(n — 2).

(b) In particular, if p = (n+2)/(n —2), every positive classical solution is radially symmet-
ric and monotone decreasing about some point. Therefore, each positive solution must

assume the form
—2

u(z) = ¢, (;) =

>\2 + |I — .I‘0|2

for some constants c,, A > 0 and some point o € R".

(¢) Equation (2.80)) has no positive classical solution in the subcritical case, p < (n+2)/(n—
2). That is, w = 0 is the only non-negative solution of ([2.80)).

Proof. In the critical case, the existence of solutions may follow from standard variational
methods. In either the super-critical or critical case, the existence of solutions, radially sym-
metric solutions in particular, follows from a shooting method for ODEs (for a more recent
approach combining Brouwer topological fixed point arguments with shooting methods, the
reader is referred to [I8, 19, [32]). The reason for requiring a shooting method approach is
due to the fact that solutions in the super-critical case no longer have finite-energy or belong
to a suitable L? space. Thus, traditional variational methods may no longer apply in this
case. Parts (b) and (c) follow from the method of moving planes (see Chapter [5)).

O

Besides the critical Sobolev exponent, another critical exponent arises when studying
distribution solutions and isolated singularities for the Lane-Emden equation. We define the
so-called Serrin exponent pg, where pse = n/(n —2) if n > 3 and pse = 400 if n = 2. It's
interesting to note that the proof of the Liouville theorem for the Lane-Emden equation is
substantially simplified in the sub-optimal range, 1 < p < ps.. In fact, the result below holds
in the more general class of distributional solutions.

Theorem 2.37. Let u be a non-negative classical solution of

—Au = |ulP"tu  in R,
u>0 in R™.

Then we necessarily have that u = 0.
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Proof. Suppose that v is a non-negative entire solution of the Lane-Emden equation. Let
A1 > 0 be the first eigenvalue of the Dirichlet Laplacian on the unit ball B;(0) C R",
and let ; be a corresponding first eigenfunction. We may assume ¢; is non-negative,
p1(x) = co > 0 in Byj(0) and ¢1(z) < ¢1(0) = maxg, g ¢1(r) = 1. If we multiply the
equation by ¢gr(r) = ¢i(R™'z), integrate over Bg(0), applying integration by parts and
Holder’s inequality leads us to

/ pruP dr = / or(—Au)dx :/ aﬂudS—l—/ (—Apgr)udz
BR(0) Bi(0) oBg(0) OV Bi(0)

A A 1/p (p—1)/p
< - prudr < §< chupdx> ( ngdx)
Br(0) Br(0) Br(0)

A _ (p—1)/p
< 1B ([ pns)
Br(0)

where we used the fact that dpr/Ov < 0 on 0Bg(0) on the first line, thanks to Hopf’s
Lemma. This implies that

p=1_o

co/ uP dr < / pruf dr < nwn/\zf/(p_l)Rn_zﬁ. (2.81)
Bpry2(0) BRr(0)

Noting that p < ps. implies that n — 2p/(p — 1) < 0, sending R — oo in (2.81]) shows that
||| p ey = 0 and thus v = 0. O

Now, we examine the properties of solutions of the Lane-Emden equation in the punctured
unit ball. We state the results but omit their proofs.

Theorem 2.38. Letn > 3 and 1 < p < pg := Z—J_r; Assume that u is a positive classical
solution of

—Au =u" in B1(0)\{0}, (2.82)

and that u is unbounded at 0. Then there exist constants 0 < C; < Cy such that

Ci(z) <wufx) < Cop(z) for x € Byja(0)\{0},

where
|z [>" if 1<p<pee,
(x) =3 |z (=log|x])* ™2 if p=p,,
|z =2/ D) if pse <p < Ds.

The next result is on the removable discontinuity of solutions at the origin.

Theorem 2.39. Let p > 1 and n > 3. Assume that u is a positive classical solution of
(2.82]).
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(a) Then u? € L} (B1(0)) and there exists a > 0 such that u is a distribution solution of

loc
—Au =P +ady in D' (B(0)),

where &y denotes the Dirac delta distribution and D'(B1(0)) is the dual space D(B1(0))
of test functions on B1(0). Furthermore, we have a < a where a = a(n,p) > 0.

(b) If p < pse and a = 0, then the singularity is removable, i.e., u is bounded in a neighbor-
hood of the origin.

(¢c) If p > pse, then a = 0.

Nonlinearly perturbed eigenvalue problems: Calculus of Variations revisted

Consider the more general nonlinear eigenvalue problem

{ —Au= A u+ [ufftu in U,

u =0 on OU. (2.83)

We have the following non-existence result, which also follows from a Rellich-Pohozaev type
identity. We only state the result and omit the proof (but see [27] for the details).

Theorem 2.40. Let u € C*({U) N CY(U) be a solution of (2.83), U C R™ is a bounded open
domain with smooth boundary, and further assume U is a star-shaped domain with respect
to the origin.

(a) If A <0 andp>(n+2)/(n—2),
(b) orif A< 0 andp > (n+2)/(n—2),
then u = 0.

To address the question of existence, particularly that of positive solutions, let A; be the
first eigenvalue of the Laplace operator —A on HJ(U). Recall \; is positive and characterized
by the variational formula (see Theorem [2.11])

/|Du]2d:£
M= inf (2.84)
weHY(U), u#0 /|u|2 dr
U

The next theorem shows that the previous non-existence result is sharp for A < 0. In fact,
the following existence result remains true for non-negative A so long as it remains below A;.

Theorem 2.41. Let 1 < p < (n+2)/(n—2) and suppose U C R" is a bounded open domain.
Then there exists a positive solution u € Hy(U) to (2.83) provided that X\ < A;.
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Proof. Consider the functional
1
E(u) = 5/ |Dul?® — Nu|? dx. (2.85)
U

It suffices to establish the existence of a minimizer for the functional F(-) over the admissible
set

M = {u € Hy(U) | ||ul| rrrry = 1}

The proof is the same as that of Theorem [2.24] except that the boundedness from below
and the coercivity of the functional need to be verified. Indeed, this is obvious if A < 0.
Generally, however, we can easily check that (2.84]) implies that

1
E(u) > §min {1, 1-— )\/)\1}HUHH3(U) for u € Hy(U), whenever A < \;.

This shows that E(-) is bounded from below and coercive on H}(U). This completes the
proof. O]
On the other hand, no positive solutions for (2.83)) exist in the range A > \;.

Theorem 2.42. Let U C R™ be a bounded open domain, p > 1 and suppose X > \;. Then
problem (2.83)) does not admit any positive solution in H}(U).

Proof. We proceed by contradiction. Assume u € H}(U) is a positive solution of (2.83)).
Testing the equation in (2.83) by the first eigenfunction ¢; > 0 and by integration by parts,
we obtain

0= / lu|P iy do + (X — /\1)/ updr > 0,
U U
and we arrive at a contradiction. O

The last existence result for positive solutions can be further refined in the critical case.
The following is referred to as the Brezis-Nirenberg theorem, and we state it without proof.

Theorem 2.43 (Brezis-Nirenberg). Let p = (n+2)/(n—2) and suppose U C R™ is a bounded
open domain.

(a) If n > 4, there exists a positive solution u € H}(U) of ([2.83)) for any A € (0, \1).

(b) If n = 3, there exists A € [0, A1) such that (2.83) admits a positive solution u € H}(U)
for each A € (A, A1).

(c) If n =3 and U = B1(0) C R3, then A\, = \1/4 and for X\ < \, there is no positive weak
solution to ([2.83)).
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We obtain another existence result for (2.83]) with the critical exponent. This next result,
albeit a weaker result than the Brezis-Nirenberg Theorem above, illustrates another varia-
tional method to obtaining the existence of weak solutions to (2.83)) provided the “miminal
energy” lies below a threshold determined by the best constant in a Sobolev inequality. The
following existence result follows on another variational argument, but prior to stating it, we
introduce some notations. We set

/U(|Du|2 ~ Aul?) d

[l

EY(u) = and S\(U)= inf EY(u),

T ) ueH (U)\{0}

and the best constant in the Sobolev embedding H{ (U) < L? (U) is denoted by S.

Remark 2.22. The best constant in this Sobolev inequality is discussed in more detail in
Chapter@ particularly Section . In fact, we will verify that S = S\(R") = Ct, where
the constant C, depends only on the dimension n and its explicit form will be calculated in

Section [0

Theorem 2.44. Letn >3, p= (n+2)/(n—2), U is a bounded domain in R", and suppose
A > 0.

(a) If Sx(U) < S, then there exists a function u € Hg(U) such that v > 0 in U and
S\(U) = E{ (u).

(b) If 0 < A < Ay and X is close to Ay, then Sy(U) < S.
Remark 2.23. FEvidently, Sx(U) < S for all A > 0 (in fact this holds for all A € R). Thus,

if the minimal energy lies below the sharp Sobolev embedding constant, a minimizer for the
constrained variational problem ezists. Moreover, part (b) of Theorem ?? remains true for
all 0 < X < Ay, but this requires a more delicate analysis using test functions constructed
from the one-parameter family of bubble functions for the Lane-Emden equation with critical
exponent (these are the essentially unique minimizers for the Sharp Sobolev inequality (see
Chapter @ We will encounter similar problems in Chapter@ and Section mn Chapter@

so we only prove this special case when X\ is sufficiently near \.

Proof of Theorem[2.44. We use the standard argument for constrained minimization prob-
lems. Step 1: Let {ux}5°, be a minimizing sequence in H}(U) for Sy, which we may assume
up > 0 and |lug|[ 2= 7y = 1, for each k. From Holder’s inequality and the boundedness of U,
we get [|ugl| 2wy < U227 |u| 2y < C and thus

Eg(uk):/(|Duk|2—Ayuk12)dx2/\Duk|2dx—m2,
U U

This shows the minimizing sequence is bounded in H}(U) and by the Rellich-Kondrachov
theorem (Theorem |A.22)), there exists u € H}(U) such that up to a subsequence, uj, — u in
H}(U), up —> u strongly in L*(U), and uj, — u pointwise a.e. in U.
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Step 2: We verify u is indeed a minimizer. By Vitali’s convergence theorem, Theorem |A.29]
we have

[
U

1
2y —ul? de = / / i|uk + (t — 1ul* dtdx (2.86)
vJo dl
1
- 2*/ /(uk + (t — Dw)|ug + (t — Dul* Pudedt
o Ju

1
—>/ /tu!tu!Z*_Qudxdt:/|u]2*da: as k — o0.
o Ju U

We also have
/ Dugl? dz = / D (ux — )| da +/ \Dul dz + o(1) as k —> oo. (2.87)
U U U
Hence, applying (2.86]) and (2.87)) leads us to

S\(U) = E¥Y (ug,) +o(1) = /U |D(uy, — u)|* do + /U | Dul? — Mu|?* dz + o(1)

> Sl — ul[2ar gy + S llullZer ) + 0(1) > Sl — ullZer ) + SallulZae g, + 0(1)
> (S = Sa (U llug — wlZae gy + Sa(U) + o(1).

Since S — S,(U) > 0, we conclude that u, — u in L¥ (U). As before, the weakly lower
semi-continuity of the norm [|u| g3y = [|Dul|r2w) ensures that

By (u) < lim B (uy) = Sy(U),
—00

and this completes the proof of part (a).

To prove part (b), let Ay > 0 and ¢; be the first eigenvalue and eigenfunction for the
Dirichlet Laplacian in U, and we may assume [|¢1]| 2+ ;) = 1. Thus, an integration by parts
leads to

S\0) < B () = [ IDaP = NP d = (0w =) [ Gdo<s
U U
provided A is sufficiently near \;. O]

Of course, the minimizers from the previous theorem provides the desired weak solution
to problem ([2.83)).

Corollary 2.1. Letn >3, p=(n+2)/(n—2), U is a bounded domain in R", and suppose
0 <A< A1 Then (2.83) admits a positive weak solution.

We should point out that the topology of the domain has a direct effect on the solvability
of the above elliptic problems. For instance, removing the star-shaped condition on the
domain can drastically change the existence of solutions to (2.83)). For example, instead
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let U be the annulus {x € R"|r; < |z| < 2} and consider the Sobolev space of radially
symmetric functions

Hy 1qg(U) = {u € Hy(U) |u(z) = u(|z|)}.

Since U is an annulus, the key point here is that the embedding Hj,,,(U) — LP*(U)
remains compact for all p > 1! So we may apply a variational method with constraint or
use a mountain pass approach on F(-) within this class of radial functions. Thus, we can
show the existence of infinitely-many radially symmetric positive solutions to for any
l<p<ooand A € R.

Remark 2.24. In each of the existence results in this section, the assumption that solutions
belong to C2(U)NC*(U) can be replaced with the weaker assumption that solutions belong to
H}(U). This is due to the regularity theory for weak solutions, which we cover in the next
chapter.

2.12.2 A Doubling Lemma and A Priori Estimates

The previous Liouville theorems are key to obtaining a priori estimates for closely related
Dirichlet problems, which are themselves important ingredients in obtaining existence and
regularity results. To get such a priori bounds, one way is to assume such bounds do not
hold. Then a blow-up or rescaling argument can be used to eventually reach a contradiction
with a Liouville theorem. We prove the following basic result to illustrate how to carry out
this idea.

Theorem 2.45. Letn >3 and 1 < p < (n+2)/(n — 2), and suppose U C R™ is a proper
domain of R™. Then there exists a universal positive constant C' = C(n,p), independent of
U and u, such that any non-negative classical solution u of Au+uP =0 in U satisfies

u(x) + |Du(x)|¥*HV) < Cdist(x,0U) > ®=Y for x € U. (2.88)

In particular, if U is an exterior domain, i.e., it contains the set {x € R™||z| > R} for some
R >0, then
u(x) + |Du(z)|¥ P < Clz|~¥ P |z| > 2R.

The proof of Theorem will require the following doubling lemma.

Lemma 2.9 (Doubling). Let (X, d) be a complete metric space, and let D C ¥ C X with D
non-empty and % closed. Set I' = ¥\ D, fix a real number k, and assume M : D — (0, 00) is
bounded on compact subsets of D. Then, if y € D such that

M (y)dist(y,I") > 2k, (2.89)
then there exists x € D such that

M (x)dist(x,I") > 2k, M(x) > M(y), (2.90)
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and
M(z) < 2M(x) for all z € D N Bx(z, k/M(x)). (2.91)

Remark 2.25. The version of the doubling lemma we presented above is far more abstract
than what we actually need. In particular, we will take X = R™, U an open subset of R™
and we set D = U and ¥ = D. Then T' = 0U and we have Bx(x,k/M(z)) C D. Moreover,

since D is open, (2.90) implies that
dist(x, D) = dist(x,T") > 2k/M(z).

Proof of the Doubling Lemma. We proceed by contradiction. Assuming the lemma is not
valid, we claim there exists a sequence {z;} in D such that

M(z;)dist(x;, ') > 2k, (2.92)
and

d(xj, xj1) < k/M(x;) (2.94)
for 7 =0,1,2,.... Choose o = y. By our contradiction argument assumption, there exists

z1 € D such that

and
d(.l’o, (L‘1> S k?/M(J]())

Fix some integer + > 1 and assume that we have already constructed xg,...,z; so that

(2.92)—(2.94) hold for j =0,1,2,...,7 — 1. Hence,
dist(x;, ') > dist(x;—1, 1) — d(x;—1,x;) > 2k — k) /M (x;—1) > 2k/M (z;),

and so
M (z;)dist(x;, ") > 2k.

Since we also have M (x;) > M(y), our contradiction assumption implies there exists z;,1 €
D such that
M(Q?prl) > 2M(‘T1)

and
d(ws, 2i41) < k/M ().

This proves the claim by induction. Therefore, we have that

M (x;) > 2'M(z0) and d(x;,241) < k27"M(x9)"" fori=0,1,2,.... (2.95)
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Namely, if {z;} is a Cauchy sequence, then it converges to some point a € D C X. Moreover,

—_

i— i—1
d(l'o, xl) S d(l’j, l'j+1) S kM(fE())il Z 27]4 S 2]{)M(£L‘0)71,

J

Il
o

Jj=0

and thus
dist(x;,T') > dist(zg,T') — 2kM (20) " > 0.

Therefore,
K ={x¢,x1,29,...,} U{a}

is a compact subset of D = ¥\I'. Now, since (2.95)) implies that M (x;) — oo asi — oo, we
see that M is unbounded on the compact subset K C D. Hence, we deduce a contradiction

with the boundedness of M on compact subsets of D, and this completes the proof.

Proof of Theorem[2.9. Assume estimate fails. Then there exist sequences
Ug,up, and y,, € Uy, for k=0,1,2,...
such that wuy, solves Auy, + uf = 0 in Uy and the functions
M (z) = uk(gc)(p—l)/2 + |Duk(x)|(p‘1)/(p+1)

satisfy
Mk(yk) > 2k/dzst(yk,8Uk)

By the Doubling Lemma and our previous remark, there exists x; € U, such that

and

Now we rescale u; by setting
oe(y) = X7 un(an + M), Tyl < k

with
>\k = Mk(l’]ﬁil

so that v, satisfies the elliptic equation
Ayur(y) +ve(y)” =0, [y < k.

Moreover,
vk(o)(pfl)/2 + ’Dwg(o)’(pfl)/(pﬂ) = N My (21) = 1,
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and
vk (y) P2 4+ | Doy (y) [PV P <2y < k.

By standard elliptic L? estimates and Sobolev embeddings, we can show there exists a
subsequence of {v;} that converges to some v in C}._(R"), which is a non-negative classical
solution of Av 4 vP =0 in R".

Furthermore, ensures that

U(o)(P—l)/Q + |Dv(0)|(7"1)/(7’+1) =1,

which implies v is non-trivial. This contradicts part (c) of Theorem i.e., it contradicts
the fact that v = 0 is the only such non-negative entire solution for the subcritical Lane-

Emden equation. This completes the proof.
O
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CHAPTER 3

Regularity Theory for Second-order Elliptic Equations

This chapter compiles the basic regularity theory for second-order elliptic equations in di-
vergence form, i.e., elliptic equations of the type

Lu=f inU,

where U is a bounded open subset of R™ and L admits the form in (1.2]).
Basically, we may classify the study of regularity properties of solutions into three main

types:

(A) Schauder’s approach or the regularity theory for classical solutions

(B) Calder6n-Zygmund or LP theory

(C) Hélder regularity of weak solutions (using both perturbation and iteration approaches)

Our goal is to cover elementary regularity results along with their proofs for each type, but
we must prepare some background material beforehand.

3.1 Preliminaries

In this section, we provide a concise treatment of the tools we require in establishing var-
ious regularity results for elliptic equations. Namely, we study the weak [P, BMO and
Morrey—Campanato spaces, the Calderon—Zygmund Decomposition, and the Marcinkiewicz
interpolation inequalities.
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3.1.1 Flattening out the Boundary

We often assume that the boundary of our domain U is smooth in some sense in order to
establish regularity estimates at the boundary. Roughly speaking, such assumptions allows
us to flatten the boundary locally and treat it much like what we would do in establishing
interior regularity estimates. In particular, let U be an open and bounded domain in R™ and
ke{l1,2,3,...}.

Definition 3.1. We say the boundary OU is C* if for each point ° € OU there exists r > 0
and a CF function v : R"™' — R such that, upon relabeling and reorienting the coordinate
azxes if necessary, we have

UNB,(2°) ={z € B.(2°) |2, > y(21,...,70-1)}.

Likewise, we say OU is C™ if OU is C* for each k = 1,2,3,..., and we say OU is analytic
if the mapping v is analytic.

We often need to change the coordinates near a boundary point of OU as to flatten out
the boundary. More precisely, fix 2° € OU and choose v and r as in the previous definition.
Define y; = z; =: ®'(z) if i = 1,2,...,n— 1 and y, = z,, — Y(1,...,Tn_1) =: ®"(z), and
write

y = ®(x).
Similarly, we set x; = y; =: Vi(y) for i = 1,2,...,n— 1 and x, = ¥y + YW1, -, Yn_1) =:
Un(y), and write

z=V(y).
Then

d=vu!

and the mapping =z — ®(z) = y “straightens out” the boundary OU near z°. Observe

additionally that these maps are volume preserving, i.e.,

det D® = det DV = 1.

3.1.2 Weak Lebesgue Spaces and Lorentz Spaces

Let X, or more precisely (X, A, 1), be a measure space where p is a positive, not necessarily
finite, measure on X. In most cases, we take X = R" with the usual n-dimensional Lebesgue
measure. For a measurable function f on X, the distribution function of f is the function
dy defined on [0, c0) as follows:

dp(t) = p({x € X - |f(x)[ > t}).

Some basic properties of distribution functions are given by the following proposition.

120



Proposition 3.1. Let f and g be measurable functions on X. Then for all s,t > 0 we have
(a) |g] < |f| p-a.e. implies that dy < dy,

(b) des(t) = dy(t/\el) for all € C\{0},

(¢) dpsgls +1) < dy(s) + dy(0),

(4) dyy(st) < dy(s) + dy(2):

Now we describe LP norm in terms of the distribution function and define the weak LP
space.

Proposition 3.2. For f € LP(X), 0 < p < oo, we have

171, = p / Py (1) dt.

Proof.
p/ tp_ldf(t) dt = p/ tp_l / X{zeX:|f(z)|>t} d,u(:p) dt
0 0 X
|f ()]
= / / pt?tdt du(x)
xJo
~ [ 1@ duo
X
= [/ 117z,
where we used Fubini’s Theorem in the second equality. O]

Definition 3.2. For (0 < p < oo, the space weak LP(X), also denoted by LP (X)) or LP*(X),
1s defined as the set of all p-measurable functions f such that

C p
| fl|pee = inf {C >0:dg(t) < (?) for all t > O}
= sup {tdf(t)l/p it > 0}
is finite. The space weak L (X) is by definition L>®(X).

Remark 3.1. The weak LP(X) space is commonly denoted by LP (X) or by its equivalent
Lorentz space characterization LP*>°(X). Moreover, we can show that

(a) ||fllrpe =0= f =0 pu a.e.,
() |EfllLeee = |K]|| fllroos
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(¢) IIf + glleee < max{2,2Y7}(|| fllzoe + [|g]l o).

Hence, the triangle inequality does not hold so that LP>*(X) is a quasi-normed linear space
for 0 < p < oo. In fact, these spaces are complete.

Obviously, the weak LP spaces are larger than LP spaces.

Proposition 3.3. For any 0 < p < 0o and any f € LP(X), we have
| fllzee < |11l
Hence, LP(X) — LP>®(X).

Proof. This is a trivial consequence of Chebyshev’s inequality:

(1) < / F@)P d().
{zeX :|f(z)|>t}

Definition 3.3. An operator T : LP(X) — L9(X) is of strong type (p,q) if
1T fllze < Cl[fllee for all f € LP(X).

Similarly, T is of weak type (p,q) if
1T fllace < Cllfllze forall f € LP(X).

For completeness, we introduce the Lorentz spaces in which the Lebesgue and weak
Lebesgue spaces are special cases. First, if f is a real (or complex) valued function defined
on X, then the decreasing rearrangement of f is the function f* defined on [0, 00) by

fr(t) =inf{s > 0| ds(s) <t}

We adopt the convention that inf ) = oo, thus f*(t) = oo whenever d¢(s) >t for all s > 0.
Now, given a measurable function f on X and 0 < p,q < oo, define

7 lzmec0 = (/Ooo<t1/pf*<t>>q %)l/q

whenever g < 0o, and if ¢ = oo we take
£l poe(x) = sup t"/7 f*(¢).
>0

Then the set of all f with ||f||rra(x) < 00 is denoted by LP?(X) and is called the Lorentz
space with indices p and ¢. It is interesting to note several properties of the decreasing
rearrangement of f. Namely, we have that
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In view of these properties, it is simple to verify that LPP(X) = LP(X), L>>(X) = L>®(X),
and weak LP(X) = LP>(X).

3.1.3 The Marcinkiewicz Interpolation Inequalities

The following is known as the Marcinkiewicz interpolation theorem. A more general “non-
diagonal” version involving the Lorentz spaces holds, but we shall not make use of it in these
notes and thus omit it.

Theorem 3.1 (Marcinkiewicz interpolation). Let T' be a linear operator from LP(X)NLI(X)
into itself with 1 <p < q < oco. If T is of weak type (p,p) and weak type (q,q), then for any
p <r<gq, T is of strong type (r,r). More precisely, if there exist constants B, and B, such

that B »
dry(t) < (%)

and B .
by < (B

for all f € LP(X) N LX), then

1T f

1 SCBYBI O\ flle for all f € LP(X) N LY(X),

where

1 6 1-4

rop q
and C' = C(p,q,r) is a positive constant. In fact,

+
r—p q—rT

C(p,q,r):2< T d )UT.

Note that if ¢ = oo, then the LY(X) and L?*°(X) spaces and their norms above are replaced
with the space L>°(X) = L°>*®°(X) and its norm.
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3.1.4 Calder6n—Zygmund and the John-Nirenberg Lemmas

Lemma 3.1 (Calder6n-Zygmund Decomposition). For f € L'Y(R"), a fized o > 0, there
exvists B and G such that

(a) R"=EUG, ENG =0,
(0) |f(z)| <a ae x€F,

(¢) G =U2,Qk, {Qr} are disjoint cubes for which

1
a< — |f(x)| dz < 2"«

Lemma 3.2 (John-Nirenberg). Suppose u € L*(U) satisfies
/ lu— (u)g,|dy < Mr™ for any B,(x) C U.
By ()
Then there holds for any B.(x) C U

/ B @erl gy < O
By (x)

for some positive py and C' depending only on n.

3.1.5 L? Boundedness of Integral Operators

We briefly introduce some basic results on integral operators of convolution type but our
goal is to ultimately prove the Hardy-Littlewood-Sobolev (HLS) inequality. However, we
will need some basic properties of the Hardy-Littlewood maximal function in order to prove
the HLS inequality. The weak Lebesgue spaces, the Calderén—Zygmund decomposition and
the Marcinkiewicz interpolation inequalities will play very important roles here.

Specifically, the operators we consider are examples of singular integral operators whose
kernels do not belong to a proper LP space but rather to a weak L” space, e.g., the Riesz
type kernel |z|~("=®) belongs to L»>(R") but not to LP(R™) when p = n/(n — a). This
type of issue is relevant in the LP regularity theory for elliptic partial differential equations
studied later in this chapter. Particularly, we shall see in Section that deriving W?2? a
priori estimates on weak solutions requires showing certain differential operators involving
the Newtonian potentials are weak and strong type operators. A similar dichotomy appears
for the maximal function operators.

The function

n
M(f)(@) = sup Avggy(a|f] = sup — / @ —y)ldy
6>0 6>0 Wn Bs(0)
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is called the centered Hardy-Littlewood maximal function of f. Likewise, the function

M(f)(x) = sup  Avgp;)lf]

>0, |z—z|<d

is called the uncentered Hardy-Littlewood maximal function of f.
Clearly, M(f) < M(f). Also, M(f) = M(|f]) > 0, ie., the maximal function is a

positive operator, and obviously M maps L*>®(R") to itself, i.e.,

M) Lo @ny < | f[Loe @y

We show that the maximal function as an integral operator is of weak type (1,1) and thus
is of strong type (p,p) for any 1 < p < oo by interpolation. The proof of this requires the
following basic result which is sometimes referred to as the Vitali covering lemma.

Lemma 3.3 (Vitali Covering). Let {By, By, ..., Br} be a finite collection of open balls in
R™. Then there exists a finite subcollection {Bj;,, Bj,, ..., B;,} of pairwise disjoint balls such

that , i
> 1Bl =3B
r=1 i=1

Proof. Without loss of generality, we can assume that the collection of balls satisfies

. (3.1)

1By > |Bs| > ... > |Bul.

Let j; = 1. Having chosen ji, jo, ..., Ji, let jit1 be the least index s > j; such that U, _, B;
is disjoint from Bs. Since we have a finite collection of balls, this process must stop after
some ¢ finite number of steps. Indeed, this yields a finite subcollection of pairwise disjoint
balls Bj,, Bj,, ..., Bj,. If some B,, was not selected, i.e., m & {j1,J2, ..., ji}, then B,, must
intersect a selected ball B; for some j, < m. Then B,, has smaller size than B; and we
must have B,,, C 3B, . This shows that the union of the unselected balls is contained in the
union of triples of the selected balls. Thus, the union of all balls is contained in the union
of the triples of the selected balls and so

k ¢ ¢ ¢
Us|<1UsBil <X BB, =5 1B, |
i=1 r=1 r=1 r=1

This completes the proof. O

Theorem 3.2. The uncentered Hardy-Littlewood mazimal function maps L*(R™) to L*>°(R™)
with constant at most 3" and also LP(R™) to itself for 1 < p < oo with constant at most
3”/pp(p — 1)=Y. The same is true for the centered maximal operator M.
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Proof. Since M(f) > M([), we have

{z e R"[IM(f)(x)] >t} C {z € R"[[M(f)(x)| > t},
and therefore it suffices to show that

Ay () := |{z € R |M(f)(@)] > 1}] < 3" 220, (3.2)
Step 1: We claim that the set

Et:{:z:eR"

M(f)(@)] >t}

is an open subset of R™. Indeed, for x € E, there is an open ball B, containing x such that
the average of | f| over B, is strictly bigger than ¢. Then the uncentered maximal function
of any other point in B, is also bigger than ¢, and thus B, is contained in F;. This proves
that E} is open.

Step 2: Estimate (3.2)) holds.
Let K be any compact subset of F;,. For each x € K there exists an open ball B,
containing the point z such that

/ ()l dy > t|By|. (3.3)

x

Observe that B, C E; for all x, and by compactness there exists a finite subcover
{Bs,, By, ..., By, } of the subset K.

In view of Lemma (3.3, we find a subcollection of pairwise disjoint balls B, , ... , By, such
that (3.1) holds and combining this with (3.3)) yields

0
i=1

since all the balls B, are disjoint and contained in E;. From this we deduce (13.2) after
taking the supremum over all compact subsets of K C F; and using the inner regularity
of the Lebesgue measure. This verifies M = M(f) (as well as M = M(f)) is of weak
type (1,1). Recall that M is of strong type (p,p) with p = oo. Thus, the Marcinkiewicz
interpolation theorem (see Theorem implies the operator M is of strong type (p,p) for
all 1 < p < oo and that

n

3" 3
<T ), Uwldr<T [ 15wldy

k
K| < [|JB.
=1

IM(f)lle < Clf]lLr,

where C' = 2([)%1)1/”3"/1’. As indicated in the theorem, we may improve this bound with

the slightly sharper constant C' = 3"/1’])%1 but we leave this to the reader to verify (see
Exercise 1.3.3in [14]). Likewise, the same argument applies to the centered Hardy-Littlewood
maximal function, M(f). This completes the proof of the theorem. n
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The following result states that the maximal operator controls the averages of a function
with respect to any radially decreasing integrable function. We omit the proof but refer to
Theorem 2.1.10 in [14].

Theorem 3.3. Let k > 0 be a function on [0, 00) that is continuous except at a finite number
of points. Suppose that K(x) = k(|x|) is an integrable function on R™ and satisfies

K(x) > K(y) whenever |z| < |y,
i.e., k is decreasing. Then
Sup [f1* Ke(z) < [|K]| 1@y M(f)(2)
for all locally integrable functions f on R". Here K (z) = ¢ "K(x/€). An important case is
when K(x) = |z|* "X |sj<r(x) for any fived R € (0,00) and o € (0,n).

With the results presented above, we are now ready to offer some important applications
of the Hardy-Littlewood maximal functions.

The Lebesgue Differentiation Theorem

Theorem 3.4 (Lebesgue Differentiation Theorem). For any f € L, .(R™), there holds

: 1 n
rlgl0|BT—(x)| o fly)dy = f(z) for a.e. v € R". (3.4)

Consequently, | f| < M(f) almost everywhere.

Before we prove this, we need some preliminary tools. First, let (X, ) and (Y, v) be two
measure spaces, p € (0,00] and g € (0,00). Suppose that D is a dense subspace of LP(X, 1)
and for every € > 0, T, is a linear operator on LP(X, 1) with values in the set of measurable
functions on Y. Define the sublinear operator

T.(f)(x) = sup [Te(f)(z)].

e>0

Theorem 3.5. Let p,q € (0,00). Suppose that for some constant C > 0 and all f € LP(X, p)
we have

1T (F)llzace < Cllflzr,

and for all f € D,
lim T.(f) =T(f) (3.5)

exists and is finite for v-a.e. and defines a linear operator on D. Then, for all f € LP(X, pu),
the limit (3.5) ezists and finite v-a.e. and uniquely defines an operator T on LP(X, ), by
the continuous extension of T' on the dense subspace D, such that

IT(f)l|zae < Ol fllze- (3.6)
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Proof. Given f € LP(X, u), we define the oscillation of f by

Oy (y) = limsup limsup |Tc(f)(y) — To(f)(y)]-

e—0 6—0

We claim that for all f € LP(X, ) and 6 > 0,
v({y € Y |Os(y) > 6}) =0. (3.7)

Once, we prove this claim, then O (y) = 0 for v-a.e. y, which further implies that 7¢.(f)(y) is
Cauchy for v-a.e. y. This implies that T,(f)(y) converges v-a.e. to some T'(f)(y) as e — 0.
The operator T defined this way on LP(X, i) is linear and extends T' defined on D.

We now prove the claim. Choose n > 0 and by density, we may choose g € D such that
|f —glle» <. Since T.(g) — T'(g) v-a.e., it follows that O, = 0 v-a.e. From this and the
linearity of 7., we conclude that

O¢(y) < Oy(y) + Os—_y(y) = Op_y(y) for v-ae. y.

Now for any 6 > 0, we have

v({y € Y[Os(y) > 6}) <v({y € Y[Os4(y) > 6})

{y € Y[2T.(f — 9)(y) > 6})

(2C/ONf = gller)? < (2Cn/6)".

Then sending 7 —» 0, we deduce (3.7). We thus conclude that T.(f) is a Cauchy sequence
and hence converges v-a.e. to some T'(f). Since |T'(f)| < |T.(f)|, the estimate follows
immediately. O]

<v
<v
<

Proof of Theorem[3.4]. Since R™ is locally compact and is the union of the open balls By (0),
N = 1,2,3,..., it suffices to prove the theorem for almost every x inside the ball By(0).
Then we may take f supported in a larger ball, thus working with f integrable over the
whole space R".

Let T.(f) = Kex f, where K () = e "k(x/€) with k = |B1(0)| " x5, (0)- We know that the
corresponding operator T} is controlled by the centered Hardy-Littlewood maximal function
M (see Theorem [3.3)), which maps L!'(R") to L*(R"), i.e., M is an operator of weak type
(1,1). Hence, T, must also be of weak type (1,1).

It is easy to show that holds in the space of continuous functions f with compact
support, which is dense in L'(R"). From this and the fact that T, maps L'(R") to L1 (R"),
Theorem (3.5 implies that holds for all f € L*(R™). O

The Hardy-Littlewood-Sobolev inequality

Consider the integral operator

Ia(f)(x) = On,a/ f(y)

g |T — Y[

128



first introduced in Definition We stated-without proof-the boundedness of the operator
I, in Lebesgue spaces in Theorem [I.25] We are now prepared to prove this so-called Hardy-
Littlewood-Sobolev (HLS) inequality. The proof that we present here centers on the strong
boundedness of the Hardy-Littlewood maximal function and Theorem [3.3]

Theorem 3.6 (HLS inequality). Let o € (0,n) and 1 < p < g < 0o satisfy

Then there exists a finite positive constant C' = C(n, a, p) such that for all f € LP(R™) there
holds

o (f)l|La@ny < Cl flLo@ny- (3.8)

Proof. The main idea is to estimate the operator I, in terms of the Hardy-Littlewood maxi-
mal function. Specifically, our estimates below will involve the uncentered maximal operator
M(f). First, observe that I,(f) is well-defined in the Schwartz class S(R™) which is dense
in LP(R") for 1 < p < oco. So it suffices to assume that f € S(R™). We may also assume
that f > 0 since I,(|f|) > |1.(f)|. Now consider the splitting,

[ Ha =l dy = 2(7)@) + R ),
where
J1 xr) = T — T dy,
(f)() Adﬂ y)lyle dy
Jo xr) = xr — T dy,
() Aﬁﬂ Pl dy

and R > 0 is some constant to be specified below.

Estimating .J;: Particularly, J; is given by convolution with the function |y|* ™xy<r. So
by applying Theorem we have that

meSMmm/

ly|<R

[y|" " dy = “EROM(f) ().

Estimating J,: Holder’s inequality yields

e N G=D/p
@ (e a)
yl=
(p — Dgwp\@-D/p
- <p—n) R £l o eny.
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Combining the above estimates for J; and J; yields for any R > 0
L(f)(x) < C(n,a,p)(R*M(f) () + R fl| o ny).

Hence, by choosing a constant multiple of the quantity

R = || 15ty (M () () 7/,

we reduce the previous estimate to

La(f)(z) < C(n, o, p) M(f )( )p/q||f||LZpﬂ§3 (3.9)

We deduce the desired result by raising estimate ) to the power ¢, integrating over R"
then using the fact that M(f) is of strong type (p,p) for any 1 < p < oo (see Theorem [3.2).
This completes the proof. n

Remark 3.2. Interestingly enough, a weaker version of the HLS inequality holds in the
endpoint case p =1 but with the original estimate (3.8) being replaced with the estimate

[ 1o ()l zace@ny < Cn, @) fllLr@ny

where ¢ = n/(n—a). The proof of this is just as before since the weaker inequality will follow
from the estimate (3.9) and the fact that M(f) is of weak type (1,1).

Fractional Sobolev inequalities from the HLS inequality

We shall derive fractional Sobolev inequalities in R™ as a result of the HLS inequality. We
refer the readers to the appendix[A]and the indicated references for a brief review of Sobolev
spaces and their embedding properties. We shall provide a more in-depth study of a sharp
Sobolev inequality in Chapter [6]

Theorem 3.7 (W#®? Sobolev Embedding). Let s € (0,n) and suppose sp < n. We define
the Sobolev space W*P(R™) as the completion of C2°(R™) with respect to the norm

Il = ([ N2 an) ™ = ([ erii@n i)™

Then W#P(R™) — LY(R"™), where ¢ = np/(n — sp), and there exists a positive constant C,
depending only on n,p, and s such that

| fllzamny < C| fllwsr@ny for all f € WHP(R™).

Proof. Choose any f € W*P(R"). Then g = (—A)*?f belongs to LP(R") and using the
properties of the Riesz potentials, we may write f = I;(g). Since

I 1 1 n—-sp sp

S
p q¢ p np np n

the HLS inequality implies
£l o@n) = 1 Lsgll La@n) < Cllgllo@ny = CIH(=A)"*fllo@ny < Cllf llworan).
for some positive constant C' = C(n, p, s). This completes the proof. n
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The Hilbert and Riesz Transforms

For completeness, we look at another prototypical example of a singular integral operator of
convolution type called the Hilbert transform. There are several ways to define the Hilbert
transform. First, we give its definition as a convolution operator with a certain principle
value distribution. We begin by defining the distribution W, € §'(R) as

(Wo, ) =7 'lim #lz) dx + 7T1/ de for ¢ € S(R).
j2|>1

Then the Hilbert transform of f € S(R) is defined by

H() (@) = (Wo = f)(z) = %P.V. /_Oo @ dy = %P.V. /_oo 5% dy,  (3.10)

where

P.V./ F(z,y)dy = lim F(z,y)dy

0o e—0 |.’L’7y‘25

is the usual principle value integral.

Remark 3.3. Note that -
/ flx —y) dy
—00 )

does not converge absolutely, and it is important to notice that the function 1/y integrated
over [—1,—¢| N [e, 1] has mean value 0. Therefore, this is precisely why we must treat the
above improper integral in the principal value sense. Also, for each x € R, H(f)(x) is defined
for all integrable functions f on R that satisfy a Holder condition near the point x.

Alternatively, we can define the Hilbert transform using the Fourier transform. Namely,
there holds

Wo(€) = —isgn(€),
and so
H(f)(@) = F(J(&)[=isgn(€)]) (). (3.11)
An immediate consequence of is that H is an isometry on L?(R), i.e.,

HH (Pl 2@ = [[fllz2w)-

Moreover, it follows that the adjoint of H is H* = —H. Now, as with the Hardy-Littlewood
maximal operator, the Hilbert transform is of strong type (p,p) for all 1 < p < co. We
sketch the proof of this. First, we can show the estimate

El

[z € RI[H(xp)(2)] > t}] < — =,

3o

t >0,
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holds for all subsets E of the real line of finite measure. This inequality and a basic result
(see Theorem 1.4.19 in [14]) ensure H is bounded on LP(R) for 1 < p < 2. By duality,
H* = —H is bounded on LP(R) for 2 < p < oo. Thus, H is also bounded on LP(R) for
2 < p < co. Finally, H is an isometry on L?(R). This completes the proof.

The Riesz tranforms are the n-dimensional analogue of the Hilbert transform. To intro-
duce such transforms, we introduce the tempered distributions W; on R", for 1 < j < n as
follows. For ¢ € S(R"), let

w2

r("3?) Y
(Wi, 0) = —an P-V./]R MTJHsO(y)dy-

Then the jth Riesz transform of f, denoted by R;(f), is given by convolution with W;,
ie.,

(") Tj — Y
Ri(f)(x) = (f*» Wj)(a) = —-PV. | ——=f(y)dy
T2 r [T — Y|
for all f € S(R™). Alternatively, the jth Riesz transform can be defined via the Fourier
transform, i.e.,

Ry(f)(z) = f*(—%ﬂs))(x) for all f € S(RY).

Interestingly enough, the Riesz transforms satisfy
—Identity = Z R?.
j=1

Likewise, the jth Riesz transforms R; are bounded operators on LP(R™) for 1 < p < oo.

Application of Riesz tranforms to the Poisson equation

Another interesting application of Riesz tranforms is to Poisson’s equation. Namely, suppose
that f belongs to S(R™) and u is a tempered distribution that solves the elliptic equation

—Au = f.
Indeed, there holds from the Fourier transform that
(m?[€?)u(e) = f(6).

Notice that for all 1 < j,k < n we have

£(6)
Am2[¢[?

0,0 = FY((2mi€;)(2mig)a(€)) = F! ((zmgj)(zmgk) ) = RRy(f) = R;Ry(—Au).

That is, we conclude that 0;0,u are functions. Thus, Riesz transforms provide an explicit
way to recover second-order derivatives in terms of the Laplacian.
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Remark 3.4. If f = 0, then we reduce the problem to the Laplace equation, Au = 0, and
a solution u € §'(R™) is usually called a harmonic distribution. As above, applying the
Fourier transform yields Au = 0 and so

—4n*|EPu =0 in S'(R").

This implies that u is supported at the origin, so applying the inverse Fourier transform
implies the Liovuille theorem that u is a polynomial.

3.2 W?? Regularity for Weak Solutions

This section covers the L” or so-called Calderén-Zygmund regularity theory for second-order
elliptic equations.

3.2.1 W?2? A Priori Estimates

Initially, we will establish the W?2P a priori estimates for the Newtonian potentials, then
extend the result to general elliptic equations.

Theorem 3.8 (W?P a priori Estimate for the Newtonian Potential). Let f € LP(U) for
1 <p<oo, and let w="T * f be the Newtonian potential of f. Then w € W*P(U) and

~Aw = f(r) ae v €U and ||D*w| < C|fl -

Proof. We provide a sketch of the proof in four key steps. We define the linear operator T’
by

Observe that it suffices to show that 7" is a bounded linear operator on LP(U).
Step 1: T : L*(U) — L*(U) is a bounded linear operator, i.e., T' is of strong type (2, 2).
Let f € C°(U) C C3°(R™). Recall that w € C*°(R™) and satisfies Poisson’s equation

—Aw = f(z) in R".

With the help of the Fourier transform and Plancherel’s identity,

2 7. _ 2 7. _ Awl? de — Aw(E)]2
[lr@par= [ (@ [ jaufa= [ Aupd
= [P =Y [ aen@r

k,j=1
-y / Dow©fde=S / Dyjw()] de
kj=1"R" k=17 R"
= | D?w|* d.

Rn
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Hence, ||Tflzz < |||z for all f € C5°(U) and so T : L*(U) — L*(U) is a bounded linear
operator simply by the density of C§°(U) in L*(U).

Step 2: T is of weak type (1,1).
This result follows from the Calderén—Zygmund decomposition and we skip its proof for
the sake of brevity, but the reader is referred to [6][page 82] for the proof.

Step 3: T is of strong type (p,p) for any 1 < p < co.

Since T' is of weak type (1,1) and is of strong type (2,2)—therefore is of weak type
(2,2)—the Marcinkiewicz interpolation theorem implies that T' is of strong type (r,r) for
1<r <2 Given any 2 < q < oo, let r = q%’l € (1,2]. By duality and the fact that 7" is of
strong type (r,r), we see that

ITfle = sup (g, Tf) = sup / 9(2)T f(z) du

lgllLr=1 lgllr=1
= sup (Tg,f) < sup | TgllllfllLe
Hg”LT:1 ||g||L7‘:1
< sup Cillgllz-Iflze
lgllLr=1
< Collf Nl zs-

Thus, T is of strong type (q,q) for ¢ € (2,00). Hence, T is of strong type (p,p) for any
1 <p<oo. ]

Now we present the WP a priori estimates on strong solutions for the uniformly elliptic
equation with bounded coefficients:

Lu= f(xz) in U. (3.12)

Definition 3.4. We say that u is a strong solution of (3.12) if u is twice weakly differ-
entiable in U and satisfies the equation almost everywhere in U.

Throughout this section, we assume U C R" is bounded and open with C*% boundary,
a’ € C(U), b € L(U) and ¢ € LI(U) for some ¢ € (n,00]. In the details below, we will
assume ¢ = oo for simplicity.

Theorem 3.9 (WW*P Estimates for Uniformly Elliptic Equations). Let 1 < p < oo, f €
LP(U), and let w € W?P(U) N HY(U) be a strong solution of (3.12). Then

[ullwzr < C ([ulle + [1f]]2e)

where C' = C(A\, A, n, p, U, ||bi]| =, ||| =) is a positive constant.

134



Proof. The proof can be separated into two major estimates—the interior estimate and the
boundary estimate.
Part I: Interior Estimate

1 D?ul| 1oy < C (|| Dull oy + Null oy + | f 1 Le@n) (3.13)

where K is any compact subset of U.

Part II: Boundary Estimate
1 D?ul| onvg) < C (|1 Dull ey + Null ey + 1| o)) (3.14)

where Us = {z € U | dist(z,0U) > 0}.
Part III: The interior and boundary estimates imply

lullw2o@) < C (lulvw) + 1 fllzew)) - (3.15)

To see this, it is obvious that both estimates yield

ullw2e@y < lJullwze@v.,) + lullwrws)
< C (|1 Dull ey + llullr@y + 1 fll e @) - (3.16)

We have the following estimate

1Dl oy < Cllull oten 1Dl e

!
C
< €| D?ul| oy + EHUHLP(U)

where the first inequality is the well-known Gagliardo—John—Nirenberg interpolation inequal-
ity and the second inequality is the basic Cauchy inequality with e. Substituting this into

(3.16) yields
2 C
lullwr@) < CellD%ull Loy + C{ llullzewy + llullow) + Iy | -

If we choose € < 55, we can absorb the Ce||[D?u| sy term on the right-hand side by the
left-hand side and arrive at the desired estimate. ]

Let us give provide the details in obtaining interior and boundary estimates.

Part I: Interior Estimates We proceed using the well-known method of frozen coefficients.
Define the cut-off function ¢ € C°(R) to be the function

(1 ifs<1,
pls) =1 g if s> 2.



Then we measure the module continuity of the coefficients a*/ with

€(9) = sup |a” (z) — a” (y)|.

lz—y|<,x,yel,1<i,j<n

Note that the function €(0) — 0 as § — 0. Then for any zo € Uss, let

oo = (57 and we) = ajate)

We compute

) = 09e) — o)) G ) 5
= (a"(wo) — aij(x))afjgcj " n(a:)aij(x)@fng
+ a' (z)u(z) az, 2(;7%, + 2a%(z) gs@- g_gj
— (a9 (o) — aij(x))ajjg;j + n(z) <b"(x)ggi + c(x)u — f(x))
i aij(x)u(x)aai?a:j + 2&3’(@%%

= — F(x) for x € R™

Notice that all terms in F' are supported in Bys(7g) C U. By the uniformly elliptic condition,
we can assume a” (zy) = d;; by a simple linear transformation. Thus, w and I'x F' both satisfy
the problem of —Awu = F' in R", where u and F' are both compactly supported in R™. Thus,
the uniqueness property for this problem implies w = I' x F'. Then, by our earlier estimates
on the Newtonian potential, we obtain

I D*w]| Lo(Bas(wo)) = 1D W Lo@ny < CIF || o@ny = CIF | o (Bas (w0))- (3.17)
Estimating each term in F yields
1F || Lo (Bas(ao)) < €(20)1D?*w]| Lo(Bas (o)) + 111 Lr(Bast@o)) + C (DUl Lo (Bas (o)) + 1l Lo (Bas (o)) -

Combining this estimate with the estimate (3.17) and choosing § sufficiently small so that
Ce(25) < 1/2, we have

1
I D*wl| Lo (Bys (o)) < é”DszLP(Bga(xo)) + C (1| 2o (Bas o)) + DUl Lo (Bas (o)) + Null o (Bas(ao))) »
which is equivalent to

|1 D*w|| 1 (Bys(wo)) < C (I f 1 Lr(Baswo)) + DUl Lo(Bas (o)) + 12l Lo(Bas (w0))) -
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Hence,

1D*ul| 1o (B5w0)) < C (11|10 (Bas (o)) + 1DUl| Lo (Bas (o)) + 10l Lo (Bas(ze)) ) -

where we used the fact that ||D?ul|e(B;(z0)) = [1D*W||1r(Bs (o)) Since u = w on Bs(xo).

We can easily extend this estimate from a d-ball to any compact subset K of U via a
standard covering argument. Namely, for any compact subset K C U, let § < %dist(K ,oU),
then K C Us,s and we can derive the desired interior estimate:

1 D?ul| oy < C ([ f oy + | Dull oy + Il o) -

Part 1I: Boundary Estimates.

The main ideas used in establishing the boundary estimate are relatively similar to the
proof of the interior estimate. Roughly speaking, we may flatten out the boundary and
treat the regularity problem as one on an upper half-space. We refer the reader to [6, [7 [13]
for more details and we only sketch the main steps here. More precisely, for any point
zo € OU, the intersection Bs(xg) N OU is a C** graph for § > 0 small enough. Therefore,
after flattening out the boundary, we may assume that this graph is given by

T, = h(xy, 29, ..., 0,_1) = h(2'),

and U lies on top of this graph locally. Now let y = ¥(z) = (2’ — 2, z, — h(2')) so that
¥ is a diffeomorphism mapping a neighborhood of zy onto the upper ball Bf(0) = {y €
B,(0) | y, > 0}. Under this map, the elliptic equation becomes

~a"(y) Dyguly) + bily) Diuly) + ey)uly) = fy)  in BE(0), (3.18)
u(y) =0 on B (0). '

Here the coefficients come from the original coefficients under the diffeomorphism . For
example, using the chain rule,

a’(y) = gfz (%D‘l(y))a”“(@/fl(y))%(@D‘l(y))-

We can assume a”(0) = §;; otherwise we can apply a linear transformation to ensure this
property holds. Moreover, since planes are mapped to planes under this diffeomorphism,
we can assume problem (3.18)) is valid even for smaller r. Applying the method of frozen
coefficients with w(y) = ¢(2|y|/r)u(y) yields

—Aw(y) = F(y) in B} (0).
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Now let w(y) and F'(y), respectively, be the odd extension of w(y) and F(y) from B} (0) to
B,(0). More precisely,

— w(y1’y27"'7yn—17yn) if Yn 2 07
w = .
<y) { _w(yla Y2, -5 Yn—1, _yn) if Yn < 0.
and ( )
- F(y,y2, - Yn—1,Yn if y, > 0,
F = .
) { —F(y1,92, -, Un-1,—Yn) if y, <O.

We can show that
—Aw(y) = F(y) in B,(0).

Thus, we can apply the same arguments as before to get the basic interior estimate for this
problem, i.e.,

1 D?ul| 1o (B, o)) < CUIS Lo (Bar o)y + 1 DUl Lo(Bar (0)) + 1l Lo (Bor (w0)))

<
< O fllze(Bor@oynwy + 1Dl Lo By, (zo)nwy + 1l Lo (Boy (z0)n0))

and this holds for any xy on OU and for some small radius r > 0. Note that the last line of
the previous estimate follows from the symmetric extension of w to w from the half ball to
the whole ball.

Furthermore, these balls form a covering of the boundary OU. By compactness of this
boundary, there is a finite cover B,,(x;), i = 1,2,...k. These balls also cover a neighborhood
of QU including U\Us for some suitably small 6 > 0. Summing the estimates over each ball
in the finite cover will imply the desired boundary estimate

[ullwee@nvs) < CUIDullLew) + l[ulle@) + [ flle@))-

This completes the proof of the W?2P a priori estimates.

3.2.2 Regularity of Solutions and A Priori Estimates

Let 1 < p < oo. So far, we have established a priori estimates to solutions in the W?2?(U)
norm by assuming weak solutions were already strong solutions belonging to H(U) N
W2P(U). Here we shall only assume u is a weak solution in W, (U). Then we actually
show that u necessarily belongs to W?%?(U) with the help of the a priori estimates. The
procedure for doing so has many points in common with our earlier derivations of the WP
a priori estimates but with some subtle differences.

We say u € WyP(U) is a weak solution of

Lu=f inU,
S (19
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if for any v € W, (U) with 1/p+1/q = 1,

/U [az‘j (z)DiuDjv + b (x)(D;u)v + c(x)uv} dr = /Uf(;p)v dx.

Although this notion of weak solution relies on duality to define the equation in the distri-
bution sense, the density of C3°(U) in W,*(U) ensures it is enough for the identity to hold
for all test functions v € C°(U). Our main result is the following.

Theorem 3.10. Letn > 2 and 1 < p < oo and let U C R"™ be a bounded and open subset.
Suppose that L is a uniformly elliptic operator whose leading coefficient a(z) is Lipschitz
continuous in U, and the lower-order terms b'(x) and c(x) are bounded functions in U. If
w e WyP(U) is a weak solution of the boundary value problem where f € LP(U), then
u e WP(U).

We shall see that the uniqueness of weak solutions of is an important ingredient
in establishing our regularity result. We only consider the case p > 2 since the uniqueness
of solutions is simpler in this situation. The reason is that the uniqueness of weak solutions
will allow us to improve the a priori estimates.

Lemma 3.4. Assume that if u € W'P(U) is a weak solution of
Lu = f(x) in U, (3.20)
then the a priori estimate
[ullw2ewy < Clllullew) + 1 llrw))

holds. In addition, assume uniqueness holds in the sense that if Lu = 0, then u =0 in U.
Then, for the unique solution u of (3.20)), we obtain the refined a priori estimate

[ullw22@) < CllfllLrw)- (3.21)

Proof. Assume the inequality (3.21]) is false. That is, there exists a sequence of functions
(fr) with || fe||zr@v)y = 1 and the sequence of corresponding solutions (us) satisfying

Luy = f(w) in U,

such that
|ug|lw2r @) — 00 as k — oo.

We consider the normalized functions
Vg = uk/||uk||Lp(U) and gk ‘= fk/||uk||Lp(U).

Thus,
vkl ey = 1 and || gk||Lr@y —> 0 as & — o0, (3.22)
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and
Ly, = gi(x) in U. (3.23)

Of course, we have the a priori estimate

vk llw2e@y < CUlvrllze@wy + lgelle@))-

Combining this with shows (v;,) is bounded in W2?(U) and so the Banach-Alaoglu
theorem implies there exists a subsequence, which we still label as (vy), that converges
weakly to some v € W2P(U). On the other hand, the compact Sobolev embedding implies
that the same subsequence converges strongly to v € LP(U), and hence ||v||z»y) = 1. Sending
k — oo in (3.23) shows

Lv=0in U.

By the uniqueness assumption, v = 0, but this contradicts with ||v||z») = 1. This completes
the proof. O

Proposition 3.4. Let p > 1 and assume f € LP(B;(0)). Then the Dirichlet problem

—Au=f in By(0),
{ u=0 on JdB(0), (3.24)

has a unique solution u € W*P(By(0)) satisfying

[ullw2r (B, 0)) < CIfllLes,0)- (3.25)

Proof. Uniqueness follows by testing the equation against u, integrating over B;(0) then

/ | Du|? dw = 0.
B1(0)

Thus, Du = 0 and so w is constant in B;(0). The boundary condition further implies that
u = 0.
Since f is continuous, the existence of solutions follows from the integral representation,

integrating by parts to get

ue) = [ Gla)fw)dy, x € BO),
B1(0)
where G(x,y) is the Green’s function for the region B (0). More precisely,

G(r,y) =T(y —z) — ¢"(y)

where I'(x) is the fundamental solution of Laplace’s equation and ¢*(y), when n > 3, is the

corrector function (c.f., (1.60))

P (y) = !

(n —2)w,
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It remains to show the W%P estimate for this integral representation of the solution. Of
course, we have already established the estimate for the first part

L;mF@—yM@ﬁw

since this is just the Newtonian potential of f(x), but we are missing the estimate for the
part involving the corrector function. Instead, we proceed with an approximation argument.
For § > 0 suitably small, consider the ball B;_4(0) and set

us(x) = / | G

where

0 elsewhere.

fi(@) = { f(z) if x € B1_4(0),

From our earlier result on Newtonian potentials, there holds that D?us belongs to L?(B;(0)).
Thus, by Poincaré’s inequality, us belongs to LF(B;(0)) and hence, to W??(B;(0)) as well.
From Lemma [3.4] we have the improved a priori estimate

[us (w2, 0)) < CllfsllLe s (0))-

We may choose a sequence {d;} — 07 so that the corresponding solutions {us,} is a Cauchy
sequence in W*P(By(0)). This follows since

[us, — us, w2 0)) < Cllfs; — f5;lLe(Bi0)) — 0

as i, j —» 0o. Then let uy be the limit point of this Cauchy sequence in W2?(B;(0)). Then
ug € W?P(B;(0)) is a solution of ([3.24) and the improved a priori estimate (3.25)) holds.
This completes the proof.

[l

Proof of Theorem [3.10. In view of our comments above, assume that p > 2. Consider
the usual smooth cut-off function

1 ifs<1,
w@%Z{ 2

0 ifs>2.

Let u € W,?(U) be a weak solution of (3.19). For any zq in Uss := {z € U|dist(x,dU) >
20}, let

|z — x|

1) = o( ") and w(z) = n@)u().

Thus, w is supported in Bas(z0). By our definition of a weak solution in W, *(U), it is easily
verified that for any v € C§°(Bas(x0)),

/ a’ (zo) DiwDjv dx = / [a¥ (20) = a¥ (x)|DswDjv + F(x)v dz,
Bas(zo)

Bas (o)
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where

F(z) = f(z) — Dj(aij (z)(Din)u) — b (x) Dju — c(z)u.

Namely, w is a weak solution of

—a"(x9)Dijw = —Dj([a" (x¢) — a”(x)]|Dyw) + F(x)  in Bas(zo), (3.26)
w=0 on 0Bss(xy). '
As before, we may assume a”(xq) = d;; and we may rewrite (3.26) as
—Aw = — D;([a"(z0) — a”(z)]Dyw) + F(z)
= — [a(x9) — a" ()] Dijw + F(x) in Bas(xo), (3.27)

where
F(z) = Dj[a"(2)]Dsw + F(z).

For any v € W??(Bas(z0)), clearly
[a (z0) — a"” (2)]Dijv € LP(Bas(g)).

In addition, it is easy to verify that F' belongs to LP(Bys(x)). In view of Proposition ,
the Laplacian A is an invertible linear operator, and so we may consider the equation

v=FKv+ (=A)T'F in W??, (3.28)

where
Ko(z) == AN [a" (x0) — a”(z)]Dyjv).

From the Lipschitz continuity of a¥(x), K is a contraction mapping from W?2P(Bsys(z¢))
to itself provided that 6 > 0 is sufficiently small. Thus, there exists a unique solution
v € W?P(Bys(xg)) to equation (3.28). By the uniqueness of solutions of (3.27), which
follows from arguments similar to those in the proof of Proposition (3.4, we have that w = v
in W2P(Bys(g)). Therefore, the regularity of u holds locally in a neighborhood of zy € U.
Since zy was chosen arbitrarily and since U is bounded, a standard covering argument yields
the regularity of u up to the entire domain. That is, u belongs to W*P(U). O

Remark 3.5. In summary, a priori reqularity estimates imply the actual reqularity of weak
solutions. From this point on, we study the reqularity of solutions in various settings and
function spaces; however, in most cases, we only establish the a priori estimates. It should be
understood that the actual reqularity of the solutions will follow from the a priori estimates
as was done in this section.
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3.3 Bootstraping: Two Basic Examples

We show how to combine the previous W?2P a priori estimates with the Holder estimates
of Sections |1.4.3[ and [1.4.4] (or more generally the Schauder estimates of Section 3.5 below)
to get the smoothness of weak solutions to a simple linear PDE and a related semilinear
problem. The goal here is to introduce and provide simple examples of bootstrap methods.

Let n > 3 and suppose U C R" is a bounded open subset with C' boundary. Consider
the linear problem

—Au=c(x)u inU,
{ u=20 on OU, (3.29)
and the semilinear problem
—Au = |[uff~lu  in U,
{ u=>0 on JU. (3.30)

We shall prove that if u € H}(U) is a weak solution of either problem, then it is actually
smooth and therefore a classical solution. The idea is to treat each PDE as a linear equation
with an integrable coefficient, then we apply the Sobolev embedding recursively to boost the
integrability of u and verify it is Holder continuous. The Schauder estimates will then show
w is of class C*®. Similarly, applying the Schauder estimates successively will further imply
that the solution is in fact smooth.

Remark 3.6. This idea of starting with a solution residing in a lower reqularity space and
iterating the a priori estimates to show it actually belongs to a higher reqularity space is an
example of a bootstrap procedure. We shall revisit bootstrap arguments again in the subsequent
sections.

Theorem 3.11. Suppose that v € Hy(U) is a weak solution of problem (3.29) and c(x)
belongs to L= (U). Then u is smooth, i.c., u € C*™.

Proof. First, we show v € C*(U) for some a € (0,1). By the Sobolev inequality, u belongs

to L%(U ). Thus, Holder’s inequality ensures the source term c(x)u belongs to Ln%(U ),
since

el 2 g < el 3 Il 2y

Then LP regularity theory implies u € W2 (U) where sq = 2n/(n + 2). Again, the Sobolev
embedding W?*(U) — L2 (U) implies that u belongs to L* (U) where s; = nsg/(n— 2s).
From this, Holder’s inequality implies ¢(z)u now belongs to L*'(U) since

1/s1 =2/n+ (n —2s1)/ns;

and

leullpsrwy < llell g g llellor @)
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Thus L? regularity theory ensures u belongs to W21 (U). If 2s; > n, the Sobolev embedding
(see Theorem implies that u belongs to C*(U) for some o € (0,1); if 2s; = n then
u € LYU) for all 1 < ¢ < oo and we again deduce u is Holder continuous. Otherwise,
if 2s; < n and thus invoke the LP and Sobolev estimates once again to deduce that u €
W2s1(U) — L*2(U), where sy = nsi/(n — 2s1) = nsy/(n — 4sq). Therefore u € W52(U),
and if 2sy > n, we get that u belongs to C*(U) for some o € (0,1) and we are done.
Otherwise, we may repeat this argument successively to find a suitably large j in which
2s; > n and u belongs to W% (U). Hence, Sobolev embedding ensures u € C*(U) for some
€ (0,1).

Finally, applying the Schauder estimates repeatedly, we further deduce that u is smooth.

0

Corollary 3.1. Suppose 1 < p < (n+2)/(n—2). Ifu € H}(U) is a weak solution of problem
(3.30]), then u is smooth.

Proof. Set c(x) = |ulP™'. Since u belongs to H(U), the Sobolev inequality implies that
uw € L3(U) for 1 < s < 2n/(n—2). From this, it is easy to check that c¢(z) belongs to Lz (U).
Hence, the previous theorem applies to get that u is smooth. O

3.4 Regularity in the Sobolev Spaces H*

In this section, we show the regularity of weak solutions to uniformly elliptic equations in
H?(U) or W?%(U). Under the appropriate conditions, we shall establish both interior and
boundary a priori estimates for the weak solutions to conclude that they are indeed strong
solutions. Then, we iterate these estimates under the right conditions to conclude that
the weak solutions belong to higher order Sobolev spaces. In fact, we show weak solutions
are actually classical solutions if the data of the elliptic problem are smooth. We assume
throughout the section that U C R" is a bounded, open set and we take u € H}(U) to be a

weak solution of
Lu=f inU,
u=0 on U,

where as always L is uniformly elliptic and is in divergence form, i.e.,

ZD x)Du —|—Zb’ )Dyu + c(x)u.

i,7=1

Of course, the regularity of the coefficients a*, b* and ¢ and the source term f must be
specified for each regularity result.
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3.4.1 Interior regularity
Theorem 3.12 (Interior H?-regularity). Assume
a’ € CYU), b, ce L(U) fori,j=1,2,...,n, (3.31)
and f € L*(U). Suppose further that u € H'(U) is a weak solution of the elliptic PDE
Lu=f in U.

Then u belongs to HE (U) and thus is a strong solution of this elliptic PDE, and for each

open subset V- CC U there holds the estimate

lullz2ory < Cllull2wy + | flle2@)), (3.32)
where the positive constant C' depends only on V', U and the coefficients of the operator L.

Remark 3.7. Note that this theorem is not assuming u satisfies the Dirichlet boundary
condition on OU. Also, recall that u is said to be a strong solution of the elliptic PDE if it
is twice weakly differentiable and satisfies the equation Lu = f, for a.e. x in U. Indeed, this
follows simply from the fact that u belongs to H? (U). More precisely, the definition of a

loc
weak solution and integration by parts indicates that

(Lu,v) = Blu,v] = (f,v)

for all v € CX(U). Thus, from Corollary this shows that Lu — f = 0 a.e. or that
Lu=f forae xzeU.

Proof of Theorem[3.13. Fix V CC U, choose an open W such that V cC W cC U, and
select a smooth cut-off function ¢ such that 0 < ¢ <1,(=1inV and ( =0 in WC.

Step 1: Since u € H'(U) is a weak solution of Lu = f in U, there holds

Z / a’(z)DiuDjv dx = / Fvdx for every v € Hy(U), (3.33)
Golu U

where

F:=f- Zb’(:c)D@u — c(z)u.

Step 2: Let |h| > 0 be small, choose k € {1,2,...,n} and substitute
v =—D;"(C*Dju)
into (3.33]) where Dl'u is the difference quotient

Diufr) = " he}’;) —0) (e r\{0}).
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For this particular test function v, we denote the resulting left-hand side (respectively, right-
hand side) of (3.33) by A (respectively, B). After some tedious calculations and denoting
vM(x) := v(x + hey), we calculate

A= Z/Uaij’h(:v)DZDiuDZDquz dr + Z/[][aij’h(x)DZDiuDZu(QC)DjC

i,j=1 i,j=1
+(D}ta" (x)) DsuD} Dju¢? + (Dfa” () DiuDjpu(2¢) Di¢) dae
= Al + AQ.

Indeed, the uniform ellipticity condition implies
Ay > 9/ C?| D} Dul? d.
U
In addition, from (3.31)) we get
42| < C/ C|Dg Dul| Diul + ¢| Dy Dul| Du| + ¢|Diul| Dy dz,
U

for some constant C' > 0. Thus, Cauchy’s inequality with € (see Theorem |A.1)) implies the
estimate

C
|Ay| < e/ C?| Dy Dul? da + —/ |Djul? + | Dul? dz.
U € Jw

Choosing € = #/2 and using the fact that

/ |Dl,§u|2dx§C’/ | Dul? d,
W U

0
|Ay| < 5/g2|D,’;Du|2dx+C/ | Dul|? dz.
U U

we arrive at

This estimate and the estimate of A; imply
0
A> —/ C3| DI Dul? dz — C/ |Dul? dx. (3.34)
2 Ju U
Recalling the definition of F' and our particular choice of the test function v, we get
BI <C [ (f1+ Dl + fuo] dz
U
C
< e/ C?| D} Dul? dx + —/ 2+ u* + |Dul* dx
U € Ju
where we used Cauchy’s inequality with € (Theorem |A.1]) and the fact that
/ lv]? dz < C’/ |Dul? + (%Dl Dul* da.
U U
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Choosing € = 0/4, we arrive at
0
Bl [ ClotpupdoC [ P+ D do < CUSRa + lulfny). (339
Recalling that A = B and inserting the estimates (3.34)) and (3.35)), we deduce that
/ | DI Dul* dox < / | DI Dul? da < C’/ 2+ u® + |Dul? dx
1% U U

for k = 1,2,...,n, and all sufficiently small |h| # 0. This implies that Du € H} _(U;R").
Hence, we have that u € H2_(U) with the estimate

loc
ullz20y < CUfllz2wy + Null e wry)- (3.36)

Step 3: Notice that we are not quite done; namely, it remains to replace the H' norm of u
instead with its L? norm in the estimate .
Indeed, since VCC W CC U, the procedure above can be used to establish the interior
estimate
lullm2gry < CULF 2wy + [lullg o) (3.37)

for an appropriate positive constant C' depending on V', W etc. Choosing a new smooth
cut-off function 0 < ¢ < 1 with ¢ = 1 in W, supp(¢) C U and setting v = ¢? in identity
(3.33)), elementary calculations will lead to the estimate

/ C*|Dul? dx < C/ f?+ v da.
U U
Hence,
ull oy < CUf 2wy + ull2wy),
and inserting this into completes the proof of the theorem. O

3.4.2 Higher interior regularity

By assuming stronger smoothness of the coefficients in the elliptic equation, we may iter-
ate the previous interior regularity theorem to get the higher regularity of weak solutions.
Namely, there holds the following.

Theorem 3.13 (Higher interior regularity). Let m be a non-negative integer, and assume
a?, b, ce C™YU) for i,j=1,2,...,n,

and
feH™U).
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Suppose further that w € H'(U) is a weak solution of the elliptic PDE
Lu=f i U

Then
u belongs to H™*(U), (3.38)

loc

and for each open subset V- CC U there holds the estimate

lull gmzory < C(llullz2@y + | £l zm@)), (3.39)

where the positive constant C' depends only on m, V', U and the coefficients of the elliptic
operator L.

Proof. We proceed by induction. Clearly, the case m = 0 holds by Theorem |3.12]
Step 1: Assume that assertions (3.38]) and (3.39)) hold for an arbitrary integer m > 2 and
all open sets U, coefficients a¥, b?, ¢, etc. Now suppose

a’, b, ce C™2(U), (3.40)

and
fe H™NU), (3.41)
and u € H'(U) is a weak solution of Lu = f in U.
So by the induction hypothesis, there holds u € H. l’Z}jz(U ) with the interior estimate

[ull 2wy < CULFmw) + llull z2@) (3.42)

for each W CC U and an appropriate positive constant C, depending only on W, the
coefficients of L, etc. Now fix V. CcC W CcC U.

Step 2: Now let o be any multi-index with |o| = m + 1, and choose any test function v, €
C=(W). Inserting v := (—1)I*!D%; into the weak solution definition Blu,v] = (f,v)r2w),
elementary calculations will lead to the identity

Bluy,v1] = (f1,v1) 2y (3.43)

where
uy := D € H'Y(W) (3.44)

and

fi=Df = Y (g) [— i D, (Da*ﬁaﬁ (x)DﬁDiu)

B<a,fa ij=1

+ 3" D (@)D Dy + D Pe(w) Du). (3.45)
i=1
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Since (3.43]) holds for each v; € C2°(W), we see that u; is a weak solution of Lu = f; in W.
So in view of (3.40)—(3.42) and (3.44)), we have f; € L*(U) with

1£illz2gwy < CCI ]

H77L+1(U) + HUHLZ(U))

Step 3: From Theorem [3.12] we conclude that u; belongs to H%(V) with the estimate

url|g2evy < CUfllzowy + v llzowy) < CULflamerwy + ullzwy)-

Since this estimate holds for each multi-index o with |a| = m + 1 and u; = D%u, we deduce
that u € H™3(V) and

ull sy < O f | amer @y + JullL2@))-

This completes the induction step for the case m + 1, and this finishes the proof of the
theorem. O]

In fact, provided that the data of the problem are smooth, we can apply Theorem [3.13
successively to deduce that the weak solutions are actually smooth.

Theorem 3.14 (Infinite differentiability in the interior). Assume
a’, b, ce C°(U) fori,j=1,2,...,n

and

feCc=).

Suppose further that w € H'(U) is a weak solution of the elliptic PDE
Lu=f in U.

Then u belongs to C*(U).

Proof. According to Theorem u belongs to H/.(U) for each integer m = 1,2,.... So
by the general Sobolev inqualities (see Theorem [A.21)), u belongs to C*(U) for k =1,2,....
This completes the proof. O

3.4.3 Global regularity

Next, we extend the earlier interior regularity estimates up to the boundary, but not sur-
prisingly, additional smoothness up to the boundary U on the data of the problem are
needed.
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Theorem 3.15 (Boundary H?*-regularity). Assume
a’ € CYU), b, ce L(U) fori,j=1,2,...,n, (3.46)
f € L*(U) and the boundary OU is C?. Suppose that u € HY(U) is a weak solution of the
boundary-value problem
{ Lu=f U, (3.47)

u=0 onoU.
Then u € H*(U), and there holds the estimate

[ullz2wy < Clull2wy + 1 fll2w)), (3.48)
where the positive constant C' depends only on U and the coefficients of L.

Remark 3.8. Note that we are now prescribing a Dirichlet boundary condition on the solu-
tion of . This boundary condition, of course, should be understood in the trace sense.
In addition, if u is the unique weak solution of the Dirichlet problem, then estimate
simplifies to

[ull 2wy < CllF 2wy,

since Theorem implies that ||u|| 2@y < C’||f||Lz(U) where C depends only on U and the
coefficients of L.

Proof of Theorem[3.15 We first prove the theorem for the special case when U is the half-
ball
U = By(0) NR™.

Step 1: Set V = B;,2(0) "R} and select a smooth cut-off function ¢ for which 0 < ¢ <1,
¢ =1in Byj(0), and ¢ = 0 in B;(0)°. In particular, ( = 1 in V and vanishes near the
curved part of QU. Since u is a weak solution of (3.47)), we have that

Blu,v] = (f,v) for all v € Hy(U),

and so

Z/ DuDvd:c—/dea:, (3.49)

i,7=1 U

where

F:=f- sz )D;u — c(x)u.
Step 2: Now let h > 0 be small, choose k € {1,2,...,n — 1} and write

v = —D;"(C*Diu).
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Note that

o) = = 7 DM ula + hex) — u())

= % (Cz(m — hep)u(z) — u(z — hey)] — () [u(x + hey) — u(x)]) (z € U).

Then, since u = 0 along {x,, = 0} in the trace sense and ¢ = 0 near the curved portion of
OU, we get that v € Hj(U). Then, substituting this particular choice of v into (3.49)), we
may write the resulting expression as A = B where

A= Z/ x) DyuDjv da (3.50)

i,7=1

and
B::/dex. (3.51)
U

Step 3: We estimate the terms A and B, but the steps are similar to the steps found in the
proof of Theorem [3.12 so we omit the details. Namely, there holds

A> g/ C?| D Dul* dx — C/ | Dul|? dx (3.52)
U U

and
|B| < Z/ ¢2|D’,;Du|2dx+c/ f?+u* + |Dul® dz, (3.53)
U U

for an appropriate positive constant C. Inserting estimates (3.52)) and (3.53) into the ex-
pression A = B, we deduce

/|D,’;Du]2 dr < C/ f% + u?|Dul* dx
v U

for k=1,2,...,n— 1. Thus, this implies that
Dyue HY (V) for k=1,2,...,n—1

with the estimate

n

> IDwullzw) < Cllulmw) + 1 fll2w)). (3.54)

kf=1k+<2n

Step 4: Notice that estimate is missing the last term || Dyl L2(y. We now estimate
this term.

In view of Theorem and the definition of the elliptic operator L, u is a strong solution
of Lu= f in V. That is,

_Z” DuDu—l—Zb’ )Du + c(x)u = f (3.55)

7,0=1 =1
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where b (z) := b'(z) — > i1 Dja"(x) for i = 1,2,...,n. From this we can solve for the last
term D,,u, i.e.,

a" (x)Dppu = — Z x)Djju + Z b'(x)Dju + c(z) — f. (3.56)
ij=1,it+j<2n

From the uniform ellipticity condition, Y " | a”(x)&&; > 0]¢]* for all x € U, € € R”. Thus,
if we take £ = e, = (0,0,...,0,1) in the last estimate, we get

a"(x) >0 >0 in U. (3.57)

Hence, combining this and the assumptions (3.46)) with identity (3.56)) gives us

| Dyt gc( 3 \Dijul—l—lDu|+|ul+|f]) in U. (3.58)

i,j=1,i+j<2n

Therefore, applying estimate (3.54)) to this, we arrive at the estimate

lullz20y) < Cl|ull 2@y + 1 fll2wy) (3.59)

for some appropriate positive constant C.

Step 5: We drop the assumption that U is a half-ball. In general, we may choose any point
2% € U and since OU is C?, we may assume, upon relabelling and reorienting the axes if
necessary, that

UNB.(2°) = {z € B.(2°) |7 > (71, 72,...,201)}

for some r > 0 and some C? function v : R®"! — R. As indicated at the beginning of this
chapter, we can change variables and write

y=®(x) and = = U(y).

Step 6: Choose s > 0 so small that the half-ball U; = B,(0)N{y, > 0} lies in ®(UNB,(z)).
Set
Vi = By2(0) N {y, > 0} (3.60)

and define
ui(y) == u(¥(y)) for y € V1.

Then it turns out that
(1) uy € HY (1), (ii) uy = 0 on OU; N {y, = 0} (3.61)

where property (ii) should be understood in the trace sense. Then, after some elementary
calculations, we can deduce that this u; is a weak solution of the PDE

Llu = f1 in U1
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where

and

with

Then, it turns out that L; is a uniformly elliptic operator and the matrix coefficient a*(x)
is O since ® and ¥ are C? maps.

Step 7: Applying our results from Steps 1-4 to the elliptic problem Lyu = f; in U; and
recalling (3.60), we deduce that u; € H?(V;) with the estimate

||U1||H2(v1) < C(||U1||L2(U1) + ||f1||L2(U1))7

and so

[ull 2y < Clllull 2wy + [ fll2@w)) (3.62)
for V.= ¥ (\).
Step 8: Finally, since QU is compact, we can cover it with finitely many sets Vi, Vs, ..., Vy

as above in which the estimate holds in each V;. Summing up these estimates over
all V; and combining the resulting estimate with the interior regularity estimate shows that
u € H*(U) with

ullz2y < Cllullzz@y + | fllz2@))-
This completes the proof of the theorem. n

3.4.4 Higher global regularity

Theorem 3.16 (Higher boundary regularity). Let m be a non-negative integer, and assume

a’, b’ ce C"TNU) for i, j=1,2,...,n, (3.63)

f e H™U) (3.64)
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and the boundary U is C™ 2. Suppose that u € Hy(U) is a weak solution of the boundary-
value problem

Lu=f inU,
u=0 onOU.

Then u € H™2(U), and there holds the estimate

lullamezwy < Clllull 2wy + 1 Flmw)), (3.65)

where the positive constant C' depends only on m, U and the coefficients of the elliptic
operator L.

Proof. We only prove the boundary estimate for the special case when the domain is the
half-ball U = B,(0) "R’} for some s > 0. Proving it for a general domain U involves similar
ideas as in the preceding theorem by straightening out the boundary and applying a standard
covering argument.

Fix t € (0,s) and set V = B,(0) N R7.

Step 1: We proceed by induction on the non-negative integer m with the goal of showing
that (3.63)) and (3.64), whenever u = 0 along {z,, = 0} in the trace sense, imply u € H™ (V)

with the estimate
ull grm2ry < C(||ull ey + 1 £l 22@r),

for some positive constant C' depending only on U, V' and the coefficients of the operator L.
Of course, the case m = 0 is a direct consequence of the preceding theorem.
Suppose then that

(i) a”, b, c € C"T2(U), (i1) f € H™H(U), (3.66)

u 1s a weak solution of
Lu= f in U,

and u vanishes along {z, = 0} in the trace sense. Fix any 0 < ¢t < r < s and write
W = B,(0) "R’}. By the induction assumption, we have u € H™*(W) with

[ull mszwy < Cllull 2wy + 1 Fllmwy)- (3.67)

Furthermore, according to the interior regularity result of Theorem [3.13, u € H;""(U).

loc

Step 2: Let a be any multi-index with || = m+1 and «,, = 0. Then set u; := D%, which
belongs to H'(U) and vanishes along the plane {z, = 0} in the trace sense. Furthermore,
as in the proof of Theorem [3.13] u is a weak solution of

Llu == f17

154



where
fii=D"f — (O‘> ol D4 (2)DP Du
e 2 B )

+ Z D*7Pbi(x)DP Dyu + Da_ﬁc(x)Dﬁu} :
i=1

So in view of (3.63)), (3.64), (3.66))(ii) and (3.67)), we see that f; € L*(W) with

112wy < Cllull 2@y + [ llmsr @))-

From our proof of Theorem [3.15] we can deduce that u; € H*(V) with

]l 20y < C(lluallczowy + | fillczowy) < CUlull 2wy + 1L f lamer@))-

Noting that u; = D%u, this shows that
1D ull 2vy < Clllull 2wy + 1 f L+ @)

for any multi-index 8 with |5 =m + 3 and 3, = 0,1, or 2.

Step 3: We only need to remove the previous restriction on (,, and we do so by induction.
Namely, assume that

1D ull2vy < Cllullzwy + 1f e w))

for any multi-index 8 with |f| = m+3 and 8, =0,1,2,...,7 for some j € {2,3,...,m+2}.
Assume then || = m + 3, 8, = j+ 1. Let us write § = v+ ¢ for § = (0,...,0,2) and
17| = m + 1. Since, u € H"*(U) and Lu = f in U, we have DYLu = D7 f a.e. in U. Now,

loc
DYLu = a™(x)DPu+ T where T is a sum of terms involving at most j derivatives of u with

respect to x,, and at most m + 3 derivatives with respect to all the other variables. Since
a"(x) > 6 > 0in U, the initial induction hypothesis imply that

ID"ullr2vy < Cllullzzw) + 1 Fllmmsr @)
provided that |5| = m + 3 and 3, = j + 1. So by induction, we have
lull sy < Cllull 2@y + [1f e @r))-

This completes the proof. n

We have a global smoothness property of weak solutions to the Dirichlet problem provided
the data are globally smooth.
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Theorem 3.17 (Infinite differentiability up to the boundary). Assume
a?,b',ce C°U) fori,j=1,2,...,n,

f € C®(U) and the boundary OU is C*. Suppose that u € HL(U) is a weak solution of the
boundary-value problem
Lu=f U,
{ u=0 ondU.

Then w e C*(U).

Proof. According to Theorem [3.16, we have u € H™(U) for each integer m = 1,2, .... Thus,
Theorem implies that u belongs to C*¥(U) for each k = 1,2,.... This completes the
proof of the theorem. O

3.5 The Schauder Estimates and C?“ Regularity

This section develops the Schauder theory for classical solutions. We mainly state and prove
the interior Schauder estimates. We also state the global estimates but refer the readers
to [7] for details. Recall We have already developed this theory for Poisson’s equation in
subsection and extending it to general uniformly elliptic second-order equations
will require a little more effort.

At the expense of being redundant, we review some relevant terminology for convenience,
but we already introduced in the first chapter. Let U C R", 2o € U and a € (0,1]. We
denote by C*(U) = C*°(U) the Banach space of functions f which are k-times continuously
differentiable on U equipped with the norm

k

1w =3 [Flyw (3.68)
7=0
where [f]0 := supy | D (2).

For Hélder continuity, we introduce the corresponding class of spaces often called Holder
spaces. We say a function f is Holder continuous with exponent a at z if the quantity

[#(@) = F(@o)|

fla.ze = sup
oo = sup 0

is finite. Furthermore, if « = 1, then f is said to be Lipschitz continuous at xy. We say f is
Holder continuous with exponent « in U if

[f]a;UiI sup M

z,yel,z#y |ZE - y|a
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is finite. For a € (0, 1], we introduce the additional semi-norms

[f]0,0;U = [f]o;U = Sl(l]p |f ()],
[flo.asr = [flasr == sup [flazes

[fleow = [flev = Z [D° flow,
|8|=k
[f]k,a;U = Z [Dﬁf]a;U-

|8|=k

Definition 3.5. We denote by C**(U), where 0 < a < 1, the space consisting of functions
f € C¥U) satisfying [fr.av < 00. This space is indeed a Banach space equipped with the
norm

I1f

Remark 3.9. We make some assertions about our notation above. We sometimes drop

ko = [ fller + [flrav- (3.69)

the set U in the subscripts of the semi-norms. For our notation on the norms, we often
interchange || - || with | - |, and vice versa. Moreover, when 0 < a < 1, C**(U) is commonly
called a Hélder space.

Some useful properties of Holder spaces are as follows.

Lemma 3.5. For u,v € C*(U), where 0 < a < 1, there holds
[uv]a < [ufo[v]a + [u]alvlo < fulalv]a.

Definition 3.6. A domain U is said to satisfy the cone property if there exists a finite cone
V' such that for any x € U, there is a cone congruent to V with vertex x contained completely

m U.

Theorem 3.18. Suppose that U satisfies the cone property with h the height of the cone.
Then, for any 0 < e < h, we have

C
[uls < €*[ul2a + €—2|U‘07 (3.70)

C
[U]l < €1+a[u]2,a + ?’U|0, (371)
where the constant C' > 0 depends only on n and solid angle of opening of the cone.

Let U be an bounded open domain and consider the general second-order linear elliptic
equation
—a"(x)Dyju + b'(x)Dyu + c(x)u = f in U, (3.72)

157



where summations over the indices ¢ and j are understood. As usual, we assume there exist
0 < A < A such that

MEP < a(2)&€ < AEJ? for all x € U, € € R™, (3.73)

a, b ce C*(U) (0 < a < 1) and
1 ij i
D N e + D Wl + lellaw | < Ao (3.74)
i i
3.5.1 Some preliminary and intermediate results

We start with a gradient estimate for Poisson’s equation.

Lemma 3.6. Let u € C*(R™) satisfy

—Au=f inR"
Then, for any R > 0, there holds
n
max |Diu(z)] < RO5CBR@U + R sup |f], (3.75)

Br(z)
where oscgu = sup, g u(x) — infyegu(x) is called the oscillation of u on the set S.

Proof. Set Fy = suppg,,
integration by parts shows

0D;u 0D;u
A(D;u) dx = / : dS:pnl/ “—(pw) dS,,
/B,,(o) ( ) dB,(0) v 8B1(0) dp ()
; /
n—1 1-n
=p" —|p DudS ).
3P< 2B,(0) )

Alternatively, since A(D;u) = D;(Au), integration by parts also yields

/ A(D;u) dx = / Auv; dS = —/ fv; dS.
B, (0) 0B,(0) 0B,(0)

Combining these two identities lead us to

9, 1
+ 2 (ptn / DyudS) =
5P< 8B,(0) ) Pt

where recall that w, := [S""!|. Integrating (3.76) in 0 < p < r gives us

y|f], and we may assume x = 0 by translation invariance. An

/ v dS‘ < wnFp, (3.76)
05,(0)

i(rl_”/ DudS — wnDiu(O)> < w, Fyr.
9B.(0)
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Multiplying the last inequality by r"~! and integrating in 0 < r < R and using polar
coordinates (co-area formula), we deduce that

j:( / Diudz — ﬁR”Diu(0)> < “n_pyRH
Br(0) n n + 1

which implies

n n
Diu(0)] < FoR D; d‘
| u()|_n+10 +Wan/BR(o) udx
n
§FR+‘ / D;(u — u(0 dm‘
| T L D)
n
< FoR+ ‘/ (u(x —u(O))yidS’
Bt S o (z)

< FyR+ %OSCBR(O)’LL.

]

We slightly extend the C*% estimates for Poisson’s equation and Laplace’s operator to
the elliptic problem
—a”(z)Dyu = f, (3.77)

where the coefficient matrix A = (a) satisfies
NE[? < a¥(2)6€; < AJE? for all € € R”, (3.78)
for some 0 < A < A.

Theorem 3.19. Let 0 < o < 1 and u € Cy*(R™) satisfy ([3.77). Then following Hdlder
estimate holds,

[Dzu]a < < [flas

where C > 0 depends only on o, n and A/\.

Proof. We may assume A = 1. After a suitable change of variables y = Bz so that BTAB =
Identity, we can rewrite (3.77) into the form

—Ayu=f.
Applying the C*® estimates from Theorem m gives us
[D*i]a < C[fla,

and thus this a priori estimate extends to u as well. O
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3.5.2 The interior estimates

When establishing regularity a priori estimates, the following type of lemma is commonly
applied with dilation arguments or when iterating inequalities. For instance, we will see it
again when studying the De Giorgi-Nash—Moser regularity theory (see Section .

Lemma 3.7. Let ©(t) be a bounded non-negative function defined in the interval [Ty, T],
where 0 < Ty < T71. Suppose that ¢ satisfies

o(t) < 0p(s) + W +B forTy<t<s<T, (3.79)
S — (0%
where A, B and a are non-negative constants and 0 < 6 < 1. Then
A
©(p) SC((]%—)—FB) Jor Ty < p < R<T, (3.80)
— p «

where C' > 0 depends only on a and 6.

Remark 3.10. The idea is that if (3.79)) holds, then we can improve it and essentially drop
the term G¢.

Proof. Set to = p. For1=0,1,2,..., set
tl‘+1 = tz + (1 - T)Ti(R - p)
for some 0 < 7 < 1 to be specified later. From ({3.79)), we get for i =0,1,2,...,

A

o(t;) < Op(tizr) + (=R =) + B.

Iterating this, we get

o(to) < 0%p(ty) + ((1 — T);(lR 7 + B) igiT—m_

Choosing 7 so that 0/7* < 1, sending k — oo reveals (3.80)). O

We are ready to prove a localized interior Schauder estimate for the solutions to (3.72)).
Similar to obtaining the W27 estimates earlier, we will use the method of frozen coefficients
to treat (3.72) like the constant coefficient problem (3.77)).

Lemma 3.8. Consider the problem (3.72), and suppose the conditions of (3.73))-(3.74) hold.
Then there exists Ry < 1, depending only onn, a, A/X and A, such that for any 0 < R < Ry

with Br(0) C U and any solution u € Cg*(Br(0)) of ([B.72), there holds
[DQU]CV;BR(O) < C{)‘il[f]a;BR(U) + R7(2+a)|u’a;BR(0)}7

where the constant C' > 0 depends only on n, a, A/X and A,,.
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Proof. We may assume that A = 1. Fixing zy € U, and by the method of freezing coeflicients,

we may rewrite (3.72]) as
—a"(x)Dyju = F,

where
F=f+ (aij (513) - aij(ﬂUo))Diju - biDiu — cu.

Applying Theorem to the above linear constant-coefficient problem leads to
[D*tasBr@o) < ClFlaiBan) < C {[f]a;BR(x()) + RY[D*u]a;Ba(a0) + !ub;BR(xo)},
By the interpolation inequalities of and with e = R/2,
[D*tlapn () < CRY[D*t]a;pp(a) + C {[f]a;BR(cco) + R_2|U|O;BR<xo>}-
Letting Ry = (1/2C)"*, then for 0 < R < Ry,
D*laspitan) < C{[flasnnten) + B2 [ulomateo |

O

Theorem 3.20 (Interior Schauder estimates). For a € (0,1), let u € C**(U) be a solution
of (3.72). Then for U' CC U, we have

1
folleer < € ($15llr + s )

where C' depends only on n,a, AJX, A, and dist(U’,0U).

3.5.3 The boundary and global estimates

Following similar ideas used in obtaining the interior estimates, we can establish correspond-
ing boundary Schauder estimates.

Theorem 3.21 (Global Schauder estimates). Consider the same assumptions from the pre-
vious theorem and further assume OU € C%*“. Suppose that u € C**(U) is a solution of
(3.72) satisfying the boundary condition u = g on OU where g € C**(U). Then

1
il < € (§18lltr + ol + s )

where C' depends only on n,a, /X, A, and U. Moreover, if u satisfies the mazximum princi-
ple, then the last term on the right-hand side of the global estimate can be dropped.
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3.6 Holder Continuity for Weak Solutions: A Pertur-
bation Approach

In this section, we prove the classical Holder estimates for second-order elliptic equations
using a perturbation approach. For the sake of simplicity, we consider the Dirichlet boundary
value problem

{Lu:f in U,

w=0 on U, (3.81)

where .
Lu=— Z D; (a"(z)Diu) + c(z)u.
ij=1

Recall that u € H}(U) is a weak solution of (3.81]) if
/ a”(z)DiuD;p + c(z)up dx = / f(z)pdx for all € Hy(U).
U U

As before, unless stated otherwise, we assume L is uniformly elliptic, ¥ € L*>(U), the
coefficient ¢ € Lz (U), and f € L%(U) Note that the assumptions on ¢ and f and the
Sobolev embedding allows for the weak solution definition to make sense. Now, a proper
space to study the Holder regularity properties in this perturbation framework are the Morrey
and Campanato spaces.

3.6.1 Morrey—Campanato Spaces

Here, we shall provide the definitions and basic properties of certain subspaces of LP spaces—
the Morrey and Campanato spaces. These function spaces allow us to generalize the Sobolev
inequalities and provide the proper setting for studying the Holder regularity of weak solu-
tions to elliptic equations. As usual, we let U C R™ be open (not necessarily bounded) and
let U.(z) := B,.(x)NU.

Definition 3.7 (Morrey Space). Let 1 < p < oo and A > 0. The Morrey space MPA(U) is
defined as

MPNU) = {fELp(U)’/ |fIPdz < CP-r* for any xUGU,r>O}
T(CBO)

with norm

1 1/p
| £l aer @y 1:( sup  — |f|pd:)3) .

zo€eU,r>0 T Ur(x0)

Proposition 3.5. Let 1 <p < oo and A > 0. Then

(i) MPAU) is a Banach space,
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(it) MPO(U) = LP(U),
(i) MPM(U) = 15(U),
(iv) If ¢ > p then LY(U) — MPXU) for A = A(p,q).

Definition 3.8 (Type A domains). A domain U is of type A if there exists a constant A > 0
such that for any xo € U and 0 < r < diam(U), |U,(zo)| > A - 1".

Definition 3.9 (Campanato Space). Let 1 < p < oo and X > 0. The Campanato space
LPAU) is defined as
LU = { € LU | s < o0}

where the Campanato seminorm is given by

1 1/p
[flrarw) = < sup  — lf = ()aorl? dx) .

zoeU,r>0 TA Ur(x0)
Remark 3.11. Indeed, the quantity [f]resw) s a seminorm as any constant function f
satisfies [f] oy = 0.

Proposition 3.6. Let 1 < p < oo and A > 0. Then
(i) If U is of type A and 0 < X\ < n, then MPNU) = LPU),
(ii) If \=n and p =1, then L¥(U) = BMO(U) for any U,

(iii) If X\ > n + p, then for any U and any p, LPA(U) is trivial in that it only contains
constant functions.

Remark 3.12. To summarize, the Morrey and Campanato spaces are indistinguishable in
the range A € (0,n). In the endpoint case p = 1 and A = n, the Campanato space reduces
to the space BMO, which is larger and properly contains the space L>*°(U) = MP™(U). In
the interval X € (n,n + p| we shall see that the Campanato spaces are indistinguishable from
the Holder and Lipschitz spaces, and this is precisely the setting for studying the Holder
reqularity of weak solutions to elliptic equations. Of course, when X > n+ p, the Campanato
spaces (just as with the C*(U) spaces when oo > 1) are trivial consisting of only the constant
functions.

We start with the following important embedding property.

Theorem 3.22 (Sobolev—Morrey Embedding). Let U C R™ be of type A, 1 < p < oo and
€ (0,1). Ifu e WYP(U) such that Du € LP"PTP(U), then u € C*(U).
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Notice that this is a generalization of Morrey’s inequality and Theorem that is,
we recover Theorem from this if p > n and a =1 —n/p (or n — p+ pa = 0). Now
to prove Theorem [3.22] we will need the next result, which indicates that the Campanato
space LPA(U) is equivalent to the Hélder space C?(U) for 1 < p < oo and A = n + pa
with o € (0,1). Indeed, this illustrates an important application of the Morrey—Campanato
spaces when studying the Holder regularity of weak solutions to elliptic equations.

Theorem 3.23. Suppose the domain U C R™ is of type A and let a € (0,1), then
LPHP(U) = C(U).
Proof. First, we prove that C*(U) < LP"P*(U). Observe that

1 (03
£ (@) = (fenl < @) oo |f(x) = f(y)ldy < Cr¥[fleew).

Thus,

. b ! — fla xo) — Pdx
rhtpa /;r(x()) ’f(l’) o (f)x07T| dr < rntpa /Br(xo) |f(.7}) f( 0) + f( 0) (f)$0,7“| d

C 2 .
/Br(xo) (M + [f]CO‘(U)> |x — x0|pa dx

= ,r.n—‘,-pa |l’ _ x0|a
Clf
<o [ s
r B’V‘(IO)

—n—po " n o) dt
< C[f]ga(U)r P /0 ¢ T
< C[f]%a(U)-

This implies that
| fllzom+vay < Cll flloaw),

and so f € LP"P(U) whenever f € C*(U), i.e., C*(U) — LP"P*(U). Hence, it only
remains to prove that LP"*(U) < C*(U). For simplicity we only give the proof of this for
the case p = 2 (see Theorem below), since our Hélder regularity results only considers
weak solutions belonging to H'(U) = WP=2(U). O

Proof of Theorem[3.23 This clearly follows from Theorem [3.23] and Poincaré’s inequality.
]

3.6.2 Preliminary Estimates

The following basically states and proves special cases of Theorems and [3.23]
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Theorem 3.24. Suppose u € L*(U) satisfies
/ lu — . |* de < M*r" ™ for any B,.(r) C U
r(z)

for some a € (0,1). Then v € C*(U) and for any U' CC U there holds

lullce@n < C(M + [ul|2),

where C' = C(n,a,U’,U) and ||u||ca@r :=sup|u| +  sup M
U’ z,yel’, x#y |{L‘ - y|

Proof. Uniform Estimate: Denote Ry = dist(U’,0U). For any xq € U’ and 0 < r; < 1y <
Ry, we have

2
’uﬂﬁo,ﬁ = Uszg,ry ‘

(‘ (‘T) - uxoﬂ“ll + ‘U(ZE) - uwo,?‘zl)z
| ( ) uﬂcoﬂ“1|2 + 2|U(l’) - ul'077"1||u(I> - uwo,T2| + |U(I’) - Uxo,r2|2
|u

( (ZL‘) - uwo,?"1|2 + |U(ZE) - Uxo,?"1|2)v

I/\ VARV

where we applied Young’s inequality: 2ab < a?+b% for a, b € R. Integrating this with respect
to x in B, (xg) yields

w.
|UZ0,T1 - uxo,?“2|2 — ? - 2{ / |u — Uz, |2 dx + / |u - uwo,?“2|2 d:L‘},
n By, (z0) By (20)

T1

from which the estimate
(—— um,m]Q < C’(n)]\/[er_" (r’f“a + 7‘3”“) (3.82)
follows. For any R < Ry, with r = R/2""! ry = R/2!, we obtain

< C(n)2~ D pr R,

‘um0,2—(i+1)R — Ugy,2—iR

Thus, for any h < k,

O() k—h—1

_ C(n,«a
|u$072’hR - uaco,Q*kR| < 2(h+1)aMRa Z 2 tor < ( )

S MR

This shows that {u,,2-ir} C R is a Cauchy sequence, and therefore convergent whose limit
u(xg) is independent of the choice of R, since (3.82) can be applied with r; = 27'R and
ro = 27'R whenever 0 < R < R < Ry. Thus, we obtain

(o) = rlino Uz r and |Ug, , — (o) < C(n)Mr® (3.83)

for any 0 < r < Ry. Recall that by Lebesgue’s differentiation theorem, {u,,} converges to
win L'(U) as r — 0, so we have u = u a.e. and the inequality in (3.83)) implies {u,,}
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converges uniformly to u(z) in U’. Moreover, since x +— u,, is continuous for any r > 0,
u(z) is continuous. Again, by the estimate in (3.83), we get

lu(x)] < CMR® + |uy gl
for any z € U' and R < Ry. Hence, u is bounded in U’ where
lull @y < C (MEG + |lull o)) -
Holder Estimate: Let x,y € U’ with R = |z — y| < Ry/2. Then we have
lu(@) — u(y)| < |w(@) = ws2r| + [uly) — uy2r| + [us2r — uy2n].

The first two terms are estimated by the inequality in (3.83]). For the last term, we rewrite
it
Uz 2r — Uy 2r| < [uzor — u(Q)] + |uy2r — u(C)],

and integrating with respect to ¢ over Byg(x) N Bagr(y), which contains Bg(z), yields

2
[Ug2r — U ,2R|2 < —{/ ‘u_u:v,2R’2d£L’+/ lu —u ,2R|2d1'}
Y |BR(x)| Bogr(x) Bar(y) !

< O(n,a)M?*R*.

Hence,
lu(z) —u(y)| < C(n, ) M|z —y|*.

For |z — y| > Ry/2 we obtain

1 «
Jue) = u(y)| < 2lulliewn < C{ + lulls flo =yl
0
This completes the proof. O

As remarked earlier, a consequence of this result is a special case of Theorem |3.22]

Corollary 3.2. Suppose u € H}. (U) satisfies
/ |Du|? doe < M?*r"~*"2* for any B,.(x) C U
Br(x)

for some a € (0,1). Then v € C*(U) and for any U' CC U there holds
[ullea@n < CM +[lul|2),
where C'= C(n,a, U’ U)

Proof. From Poincaré’s inequality, we have

/ lu — gy, |*dr < C’(n)r2/ |Dul? dx < C, M?r™t2e,
By () Br(x)

and the result follows immediately from the previous theorem. O]
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3.6.3 Holder Continuity of Weak Solutions

First, we state two lemmas, which are key to establishing the Hoélder continuity of weak
solutions. The estimates in the resulting regularity theorems in this section are sometimes
called Cordes-Nirenberg type estimates.

Lemma 3.9. Let ¢(t) be a non-negative and non-decreasing function on [0, R]. Suppose that

o(p) < A{ <§>a + E}(,D(T) + Brf for any 0 < p<r <R, (3.84)

where A, B, «, 8 are non-negative constants and < «. Then, for any v € (5,«), there
exists a constant €g = €9( A, v, 5,7) such that if € < €y, we have for all0 < p <r <R

P\
o(p) < O{ (;) p(r) + Bpﬁ},
where C' = C(A, «, 8,7v) > 0. In particular, we have for any 0 < r < R,

olr) < c{%w + B},

Proof. For 7 € (0,1) and r € (0, R), we rewrite (3.84]) as
o(1r) < 71+ et *)(r) + BrP.
Choosing 7 so that 2A7% = 77 and assuming ey7~* < 1, we get
o(1r) < ¢(r) + Brf for each r < R.

Iterating this for all positive integers k, we obtain

k
4,0(7-’”17") < T”go(Tkr) + BrkB,B < T(k“”gp(r) + BrkB,8 ZTj(v—ﬁ)
=0

Brkbyb
< 7EF15(r) 4 T

k+2 k+1

From this, we choose k so that 77%r < p < 757 and we arrive at

N 8
p(p) < %(g) o(r) + ﬁ‘

Lemma 3.10. Suppose u € H'(U) satisfies

/ |Dul? dz < Mr* for any B,(xo) C U,
Br(z0)
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or some p € [0,n). Then for any U' CC U there holds for any B,.(x¢) C U with xo € U’
i

/ lul* dx < C(n, A\, p, U, U") (M —|—/ \u|2d:c) ™,
By (z0) U

where A\=p+2if u<n—2and A € [0,n) ifn—2 < p <n.

Proof. From Poincaré’s inequality,

/ U — Uy, ,|* dr < Cr2/ |Dul? dx < c(n)MrH*?
By (zo)

By (zo)

for any zp € U’ and 0 < r < Ry := dist(U’,0U). Hence,

/ U — gy | dx < e(n) M7
Br(mo)

where A is as stated in the lemma. Then for any 0 < p < r < Ry, we have

/ w?dr < 2/
BP(IO) By

< e(n)p" [tz P +2 / it — gy P da
By (o)

< c(n)(£>n/ w? dr + Mr?,
By (z0)

|ur0,r|2dx+2/ U — Uy, | da
(z0) Bp(xo)

r

where we used |, ,|> <

T

c(n) I5 (20) u? dz. Indeed, it follows that ¢(r) = [ By (o) u? d satisfies

o(p) < ¢(n) [(g) o(r) + M’r’\} for any 0 < p <r < Ry.

Therefore, Lemma 3.9 implies that for any 0 < p < r < Ry,

A
/ u2dx§c[(8> / qux—FMp’\].
By (z0) r Br(z0)

In particular, if r = Ry,

/ uzdxgcp)‘(M—i—/lﬂdx) for 0 < p < Ry.
By (o) U
For simplicity, we assume that U = B; = B4(0).
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Theorem 3.25. Let u € H'(By) be a weak solution of (3.81). Assume a € C(By), ¢ €
L™(By), and f € LY(By) for some q € (n/2,n). Thenu € C*(By) where o =2—n/q € (0,1).
Moreover, there exists an Ry = Ro(\, A, 7,||c||zn) such that for any xo € B2 and r < Ry,
there holds

/ | Du|? dz < CTn*HQO‘{Hf”%q(Bl) + HUH?*{l(Bl)}v
BT(IO)
where C'= C(A\, A, 7, ||c]|zn) is a positive constant with
|a” (z) — a"(y)| < 7|z —yl for any @,y € By.
Remark 3.13. In the case where c = 0, we may replace |[u|| g1,y with ||Dul|r2s,)-

The main idea in the proof is to compare the solution with harmonic functions and use
a perturbation argument. So we rely on the previous estimates and comparison results on
harmonic functions.

Lemma 3.11 (Basic Estimates for Harmonic Functions). Suppose {a“} is a constant positive
definite matriz satisfying the uniformly elliptic condition,

MNEP < a8 < AEP® for any € € R™

for some 0 < A\ < A. Suppose w € H'(B,(z0)) is a weak solution of D;(a"(z)Djw) = 0 in
B.(xo). Then for any 0 < p <r, there hold

/ |Dw|*dx < C (B)n/ |Dw|? dz,
Bp(xo) " Br(zo0)

2 P\ 2
[ e u,Pae < (8) [ Du (Du), s,
Bp(z0) r By (o)
where C'= C(\,A).
Proof. This follows from Lemma [I.3] with u replaced by Dw instead. O

Lemma 3.12 (Comparison with Harmonic Functions). Suppose w is as in the previous
lemma. Then for any u € H}(B,(x¢)) there hold for any 0 < p <r,

/ |Dul? dx < C’{ <£>n/ |Du|2d$+/ |D(u—w)|2dx},
By (x0) "7 J Br(o) By (o)

n+2
[ Du,Par<c{ (8)7 [ Du-(Dup P [
Bp(m()) r Byr(z0) B
where C'= C(\,A).

[D(u—w)?dz},

7'(330)
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Proof. We prove this by directly by simple computations. With v = u — w we have that for
any 0 < p <,

/ | Du|? dx < 2/ |Dw|2dx+2/ | Dv|? dz

Bp(ffo) Bp(xO) Bﬂ(xO)

C (’—)) / |Dw\2dx+2/ |Dol? dz
r Br(x0) Br(zo)

C <§>n /BT(wO) | Du|? d + C’{l + <§>n } /Br(xo) |Dv|? dz,

IN

IN

and

/ \Du— (Du), | dr < 2/ Du = (D), | dz + 2/ Dof? da
Bp(a“()) Bﬂ(xO)

B/J(wO)

< 4/ | Dw — (Dw)x07p|2dx—|—6/ | Dv|* dw
Bﬂ(mo)

BP(IO)

p n+2 9 9
(—) / | Dw — (Dw)g,,,|” dx + 6/ | Dv|* dx
r Br(zo0) B (

o)
n+2
C <E> / |Du — (D), | d
Br(z0)

,
+ C’{l + <§>n+2 } /Br(xo) | Dv|? da.

]

IN
Q

IN

Proof of Theorem[3.25 We decompose u into a sum v + w where w satisfies a homogeneous
equation and v has estimates in terms of non-homogeneous terms.
For any B, (zo) C Bi, write the equation as

/ a”(zg)DuDjpdr = | fo — cup + (a”(xo) — a”(x))D;uDjp dx.
B B

In B,(xq), the Dirichlet problem,
/ a”(zo)DyswDjpdx =0 for any ¢ € Hy (B, (7))
By (x0)

has a unique weak solution in H}(B, (o)) and u — w € H}(B,(zg)). Clearly, v = u —w
belongs in H} (B, (o)) and satisfies

/ a¥ (o) DsvD;p dx = fo —cup + (a”(x0) — a”(z))DyuD;p dx (3.85)
B

By
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for any p € HJ(B,(z)). By taking the test function ¢ = v, we have the following estimates
on each term in the right-hand side of (3.85)):

2n H?J;Q 2n n2T
/ fodx < (/ fn+2dx> (/ |v|n2dx)
By (x0) By (x0) Br(x0)

n+42 1
. S 3
< (/ frt2 dx) (/ | Dvl? dw) ,
By (zo) By (o)

n—1

1 n—1
/ cuvdr < (/ |e|™ d:);) (/ Juw| 71 d:)s)
By (z0) Br(z0) Br(z0)
1 1 n-2
n 2 om 2n
() () ([
Br(z0) Br(z0) Br(z0)
: : :
< (/ |c|"dx) (/ |u|2dx) (/ | Dvl? dx) ,
By (zo) By (zo) By (zo)

g y 2 >
/ (a”(xg) — a”(z))DiuDjvdr < 7(r) (/ | Dul? dx) </ | Dovl? dx) )
By (z0) By (zo) By (z0)

where we used Holder’s inequality and the Sobolev embedding theorem. From the uniform
ellipticity condition, we estimate the terms in (3.85)) by using the previous three estimates
then divide both sides of the inequality by ||Dv||12(p, (z0)) to get

/ | Dv|? da
By (zo)

2/n ) "TH
<c T(T)Q/ Duf> da + (/ |c|”dx) / fuf? dz + (/ |f|n+2) |
Br(z0) Br(z0) Br(z0) Br(20)

Therefore, Lemma [3.12] implies that for any 0 < p < r,

/B,)(zo) [Duf do < O{ <</_;>” + T(T)2> /BT( |Dul? dz

Z0)

2/n ) nTH
+ (/ |e|™ d:z:) / lul? dr + (/ |f\"+2) ., (3.86)
By (x0) By (o) By (z0)

where C' = (n, A\, A) is a positive constant. By Holder’s inequality,

n+2

n+2 2
( / rf|ff2) < ( / |frqu)qr”—2+2a,
By (o) Br(z0)
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where a =2 — 7 € (0,1) whenever ¢ € (3,n). Thus, (3.86) implies for any B,(zy) C By and
any 0 < p <,

2 Py" 7(1r)? ul? dz
/B,,(m'Du' dx§0{<<r> + ())/B \Dul? d

r(20)
2/n
e ([ ran) [ IuIQdm+T”‘2+2“||f|liq(31>}-
Br(z0) By (z0)
Case 1: ¢ =0.

We have for any B, (z¢) C B; and for any 0 < p <,

/Bpw Duf dz < 0{ ((2)" +707?) /BT(

By Lemma we may replace v 272% in the last estimate by p"~272% in which case the
proof is complete. More precisely, there exists an Ry > 0 such that for any zy € By/2(0) and
any 0 < p <r < Ry, we have

it cd ((8) o) |

In particular, taking r = Ry yields for any p < Ry,

/ | Dul? dv < C’p"“m{ / | Dul? dz + Hf”%q(Bl)}-
By (z0) B

Case 2: General coefficient ¢ € L™(B;). We have for any B,(x¢) C By and any 0 < p <,

/BP(IO) | Du|? dw < C’{ <<§> —1—7'(7’)2) /BT(
(3.87)

where x(F) = HfH%q(Bl). We will prove, via a bootstrap argument, that for any xzy € By,
and any 0 < p <71 < 1/2,

[, outas <l () sr0r) [ i

x0)

| Du? dz + Tn_2+2a||f||%q(31)}‘

x0)

7»(zo)

| Dul|? dz + p"2+2a‘|fH%q(Bl)}~

| Du|? dw + r"~*T2y (F) —I—/ u? dx

x0) Br (o)

+ phTERe (X(F) + / wdr+ [ |Dul? d9€) } (3.88)
Bl Bl

First by Lemma [3.10} there exists an R; € (1/2,1) such that there holds for any zy € Bpg,
andany 0 <r<1— R,

/ u? dr < C’r‘sl{ | Dul? dx + / u? dx} (3.89)
B (z0) B B
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where §; = 2 if n > 2 and §; is arbitrary in (0,2) if n = 2. This, combined with (3.87]),

implies

[, otz < (&) +r07) [

Then (3.88) holds in the following cases:

|Dul? dz + r" T2 (F) 4 ”Uqul(Bl)}-

(0)

(i) n = 2, by choosing §; = 2,
(ii) n > 2 while n — 24 2« < 2, by choosing 6; = 2.

However, for n > 2 and n — 2 4+ 2a > 2, we have

/B,,@o) \Dul? dz < C{ ((2)" +707?) /BT(

‘Du|2 dI -+ ’]”2 <X(F> -+ ’]”61||u||§{1(31)> }

z0)

]

Lemma [3.9| again implies that for any xg € Bg, and any 0 <r <1 — R,

/B( )!DU\2d9€ < CTQ{X(F)JF HUH?p(Bl)}-
(0

Then by Lemma there exists an Ry € (1/2, R;) such that there holds for any xy € Bg,
and any 0 <r < Ry — Ry

By (xzo

where d; = 4 if n > 4 and 0, is arbitrary in (2,n) if n = 3 or 4. Notice that this last estimate

(3.90) is an improvement compared with (3.89). Substitute (3.90)) in (3.87)) and continue the
process. After finite steps we arrive at (3.88|).

3.6.4 Holder Continuity of the Gradient

As before, we take U = B;. We have the following estimate for the gradient of weak solutions
of equation ([3.81]). The proof is similar as before, so we omit the details.

Theorem 3.26. Let uw € H'(By) be a weak solution of (3.81)). Assume a € C*(By),
ce€ LY(By) and f € LY(By) for some ¢ >n and a« =1 —n/q € (0,1). Then Du € C*(By).
Moreover, there exists an Ry = Ro(\, |a"|ce, ||c||ze) such that for any xo € Byjs and r < Ry,
there holds

/ |Du — (D) gy |* dx < CTHZQ{HfH%q(Bl) + HuH%Il(Bl)}v
Br(J:O)
where C' = C(\, |a¥|ca, ||c||1a) is a positive constant.
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3.7 De Giorgi—-Nash—Moser Regularity Theory

This section introduces the celebrated De Giorgi-Nash-Moser regularity theory for the
Holder continuity of solutions, and we introduce two ideas for completeness. That is, we first
introduce De Giorgi’s approach which develops the local boundedness of solutions followed
by the estimate on its oscillation. These two ingredients will imply the Holder continuity of
solutions. Then, we study Moser’s approach, which also establishes the same local bound-
edness result combined with his version of a Harnack inequality to conclude the same result
on the Holder continuity of solutions. Note carefully that, unlike in the previous section,
we will not make any regularity assumptions on the coefficients of the elliptic operators.
Furthermore, the overall idea we use here relies on a delicate iteration technique rather than
perturbation methods.

3.7.1 Motivation

Before we proceed with the technical aspects of this theory, let us motivate its historical
relevance. The renowned nineteenth problem in Hilbert’s famous program asked whether or
not minimizers of the energy functional

J(w)—/UL(Dw)dx for we Hy(U)N H*(U),

are smooth. Here, the Lagrangian L is assumed to be smooth and satisfies some additional
conditions (such as those described in Theorem of Chapter [2). The Euler-Lagrange
equation for this variational problem is the elliptic equation
> (Ly,(Dw)),, =0 in U. (3.91)
i=1
In fact, the minimizers can be easily shown to be smooth using the Schauder estimates and
a standard bootstrap argument but at the expense of requiring the minimizer be of class
CYe a priori. The main result of the De Giorgi-Nash-Moser theory precisely ensures this
initial regularity holds true and thus providing the crucial ingredient in resolving Hilbert’s
nineteenth problem.
What follows is only a rough explanation of the procedure but the arguments can certainly
be made rigorous. If we formally differentiate equation (3.91)) with respect to x; then insert
into the resulting calculation, we would obtain

n

Z (Lpip, (DW) W30, )z, = 0.

ij=1
Thus, if we set u = w,, , this implies that u satisfies the linear elliptic equation

n

> (@7 (2)ua,)a, =0, (3.92)

1,j=1
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where a”(z) = Ly, (Dw(x)) satisfies some type of uniform ellipticity condition. De Giorgi-

Nash—Moser theory states that if u is a weak solution of equation , then w is Holder
continuous and so w is a C** solution of (3.91)). Hence, the coefficients a”/(z) are Holder
continuous and the Schauder estimates imply that u € C%>®. By bootstrap, u is of class C*
for k =2,3,4,... and is therefore, along with w, smooth.

3.7.2 Local Boundedness and Preliminary Lemmas

Both De Giorgi and Moser’s approach rely initially on the local boundedness of solutions
before arriving at the Holder regularity result. We now state this result but defer its proof
until the next section.

Theorem 3.27 (local boundedness). Suppose a” € L®(B;) and ¢ € L%B;) for some
q > n/2 satisfy the following assumptions:

aij(x)&fj > /\|€|2 forany z € By, £ € R",

and
1@ || oo (By) + llell Loy < A

for some positive constants X and A. Suppose that v € H'(By) is a sub-solution in the
following sense:

/ a’? DiuD;p + cup dr < fodx for any non-negative p € Hy(By). (3.93)
B1 Bl

If f € LYBy), then u™ € L2.(By). Moreover, there holds for any 0 € (0,1) and p > 0

loc

1
* [ [P
ngfu = C{ (1 —@)n/p lu “L”(Bl) + ||f||Lq(B1)},

where C'= C(n, A\, \,p,q) is a positive constant.

One strategy to prove this is to use a clever iteration procedure of Moser, which will also
appear in our proof of the weak Harnack inequality below. In either case, Moser’s iteration
procedure will also make use of the following elementary result.

Lemma 3.13. Let U be a bounded subset, u : U + R is measurable, |u|P € L*(U) for p > 1

and assume . y
P
— P
d(p) : <’U’/U\u] dx)

lim ®(p) = sup |ul.
p—0o0 U

s well-defined. Then
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Proof. Let p > p be arbitrary and we may assume u to be non-negative. If u € L” (U), then
Holder’s inequality yields

(|—é|/UuP dx) v < |U|11/P</Uldx> p;;/p(/U(up)p’/p dx>1/p’

Hence, ®(p) is monotone increasing with respect to p > 1. Moreover, ®(p) is bounded above
by sup;; u since

1 1/
d(p) < <]U! (supu)p dx) ’ < sgpu.

Thus, lim,_,., ®(p) exists and lim, o, ®(p) < supy u.
On the other hand, by definition of the essential supremum, for each € > 0 there exists
d > 0 such that |A| > §|U|, where

A={zeU|u(x)>supu— €}.
U

Therefore,

|A| 1/10 / p
d(p) > updx > §YP(supu — ).
|U| |A| U

Hence, after sending p — oo we get

lim inf ®(p) > supu — € for every € > 0.

p—o0

Both set of estimates imply that lim, ,,, ®(p) = supu. This completes the proof of the
lemma. O]

After establishing local boundedness, the Holder continuity of weak solutions will be a
consequence of the following important lemma and a Harnack or oscillation inequality.

Lemma 3.14. Let w and o be non-decreasing functions in an interval (0, R]. Suppose there

holds for all r < R,
w(tr) < yw(r)+o(r)

for some 0 < 7,7 < 1. Then for any p € (0,1) and r < R we have

w(r) < C’{ (%)aw(R) + U(T“Rk“)}

where C'= C(~,T) is a positive constant and o = (1 — p)log~y/log.
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Proof. Fix some r; < R. Then for any r < r; we have

w(rr) < yw(r) + o(ry)

since ¢ is non-decreasing. We now iterate this inequality to get for any positive integer k

e

-1

w(rhr1) <HPw(rm) +o(r) Y 7" <7'w(R) +

i
o

i
For any r < ry, choose k so that

TkT1<7"§7'

k-1
1

o(r1)
1—~

This ensures that (logv*)(log7) < (log~v)(log(r/r1)) and so

'Yk < (T/,r,l)logv/logr‘

Hence, the monotonicity of w then implies that

w(r) <w(m™ ) < Yw(R) +

If we take = r*R'~*, we obtain

3.7.3 Proof of Local Boundedness: Moser Iteration

To illustrate the main idea in our proof of Theorem [3.27] let us describe our strategy for
the case when f =0, § = 1/2 and p = 2. By choosing an appropriate test function, we will
estimate the LP' norm of u in a smaller ball by the LP? norm of u in a larger ball for p; > po;

that is, we establish a reverse type Holder inequality

lull 2oy (B,,) < CllullLez(s,,), (3.94)

for p1 > pe and r; < ro. The issue is our choice of test function forces the constant C'
to behave like (r, — ry)~!. Moser’s approach, however, is to carefully iterate the estimate
and choose sequences {r;} and {p;} which avoids this constant from blowing up. Thus, this
iteration technique and Lemma allows us to send p; — 00, po — 2,71 — 1/2and ry — 1

in (3.94) to get the desired estimate.
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Proof of Theorem [3.27. The proof is long, so we divide it into several steps.

Step 1: We prove the theorem for § = 1/2 and p = 2. We follow Moser’s proof, but an
alternative proof by De Giorgi can also be found in [16]. For some k£ > 0 and m > 0, set

u=u"+k and
a U if u<m,
™ m4+k ifu>m.

Then we have Du,, =0 in {u < 0} and {u > m} and 4,, < @. Set the test function
= n*(upu— k") € Hy(By)
for some 8 > 0 and some non-negative function n € C}(B;). Direct calculation yields
Dy = pn*ul ! D, + n*ul, Du + 2nDn(ab,a — k°*)
> n*u? (8D, + Du) + 2nDn(al a — kP). (3.95)

Note that ¢ = 0 and Dy = 0 in {u < 0}. Hence, if we substitute such ¢ in the equation,
we integrate in the set {u > 0} then send m to infinity. Note also that u™ < @ and
u? i — kPt < 4f i for k > 0. From the elementary inequality ab < 2ab < a®+b? for a,b > 0,
we have

A|Da||Dnjal an = a x b
= A(2/N)?| Dnlay/*a x (A/2)"*na;/*| Da|
2A2 A
< T{Dm?aﬁa? + inQaf;]DaP. (3.96)
Hence,

/aij (x)DiuDjpdr = /aij (z)D;u(BDji, + Dju)n*ul, + 2 / a’(x)DsaD;n(ala — kP )n dx

> /\5/772ufn\Dum|2dx+A/nQuﬁyDuPda:—A/|DuHDn|u§1undx

A 2A2
> Aﬂ/n2u§|Dum|2dx+§/n2ui|Du|2da:—T/|Dn|2u§nu2dx,

where we used (3.95)) in the first line and we used (3.96)) to estimate the last line. Therefore,
noting that u > k, we obtain

5/n2aflyDam\2dx+/n2a§n|Da|2dq; < C{/|Dn\2fafna2 dx+/|c|77271§n712+ |f|n2@ﬁada:}

SC{/|Dn\2a§1a2 dx+/co772&ﬁmﬁ2 dx}, (3.97)
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where ¢g is defined as

I/1

o

Choose k = || f|lza(s,) if f is not identically 0. Otherwise, choose arbitrary & > 0 and
eventually let & — 0". By assumption, we have

Co — |C|+

||C()||Lq S A+ 1.

Set w = ﬂfzﬂﬂ and so
[Dwl? < (1+ B){ B | Dt + 5, | D}

Thus, from ((3.97)) we have

/\Dw|2n2da: < C{(1+ﬁ)/w2|Dn|2dx+(1+ﬁ)/cow2772dx}
or
/|D(w77)|2n2da: < C{(1+B)/w2\Dn|2daE—|—(1+ﬁ)/cow2n2 dx}. (3.98)

Holder’s inequality implies

/cow2n2 dr < (/ cg da:)é (/(nw)f—‘ﬁ dx)l_l/q < (1+A) (/(nw)f—ql dx)l_l/q.

By interpolation and Sobolev embedding with 2* = % > q2_—ql > 2 if ¢ > 5, we have

lrrwll 20, < ellnwl| 2+ + Cln, g)e == ]| 2
< el D)2 + Cn, g)e 2= w2

for small € > 0. Therefore, combining this with (3.98]) yields

/ rD<wn>|2da:sc{<1+ﬁ> [wpu o+ (4 ) [ w%fdx},
and in particular

[ 1@< ca+ gy [(piP + i)t

where « is a positive number depending only on n and ¢g. Sobolev embedding then implies

1/x
( I dx) <c+or [(Daf + iy dr,
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where x = ~*5 > 1forn > 2 and x > 2 for n = 2.
Choose the cutoff function as follows. For any 0 < r < R < 1, set n € C3(Bg) with the

property
2
n=1in B, and |Dn| < ——.
R—r

(/TwQde)l/X SC’%/BRLUQCM.

If we recall the definition of w, we have

1/x a
</ uxalx dx) < C%/ w2a? du.
", (R—r) Br

Set v = [+ 2 > 2, then we get

1/x ( 1)e
_ Y ) _
X <M ) v
(/T )l d:z:) C’( )2 /BR u’dx

provided that the integral on the right-hand side is finite. By sending m — oo, we conclude

Then we obtain

that y
_ (Y =D\
Jallonian < (C—) el
provided that ||@||z+(s,) < oo, where C' = C(n,q, A\, A) is a positive constant indepen-

dent of . We shall iterate the previous estimated beginning with v = 2 and proceed via
2,2x,2x%,.... Now set for i = 0,1,2,...,

Z. 11
vi =2x" and r; = 5—1— SR
Since v; = xvi—1 and 751 — 1; = 270D we have for i = 1,2, ...,

||a||L’”(B7”i) S C(”’ q7 )\7 ‘A)Xli_1 ||aHL7i—1(B”_1)

provided that ||@| ;v-1(p, ) < co. Hence, by iteration, we obtain

1l 8,y < C= 5T ]l p2gy)

or in particular,

/ X dx < = x 1 (/ u? dx) )
By, By
Sending ¢« — oo in the previous estimate yields

supu < CHEHLz(Bl) or sup ut < C||U+||L2(B1) + k= C{||U+HL2(31) + HfHLq(Bl)}’

Bl/2 Bl/2

This completes the proof of the theorem for the case p = 2.
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Remark 3.14. If the subsolution u is bounded, we may simply take the test function
p =0’ (@’ — k) € Hy(By).

for some B > 0 and some non-negative function n € C3(By).

Step 2: We now prove the theorem for p > 2.
Based on a dilation argument, we take any R < 1 and define

u(y) = u(Ry) for y € By.

It is easy to see that u satisfies

/ a”(z)D;tu Dy + élip dw < fodz
Bl Bl

for any non-negative ¢ € H}(B;) where
a(y) = a(Ry). é(y) = R*c(Ry), and f(y) = R*f(Ry),
for any y € By. Direct calculation shows
167 ]| e 81) + l1€llacsy) = 167 |z (my) + BZ™ el a(iny < A

We may apply what we proved above to @ in B; (iterating with v = p instead of v = 2) and
rewrite the result in terms of u. Hence, we obtain for p > 2

sup ut < C’{Rn/pHUWLP(BR) + R2n/q”fHLq(BR)}

Br/a

where C' = C(n, A\, A, p,q) is a positive constant. The estimate in Byg can be obtained by
applying the above result to B_g)r(y) for any y € Byr. Take R = 1. This is Theorem W
for any 6 € (0,1) and p > 2.

Step 3: We now prove the theorem for p € (0,2). We show that for any 6 € (0,1) and
0 < R <1 there holds

1 —n
et Nz o) < C{WHU*HB@R) + R /q||f||Lq<BR>}

1
- + , . '
= C{ gyl e + 171 (BR)}

For p € (0,2) we have

/ (U+)2 d:L‘ S ||U+||i:°p(BR)/ (U+)p dx
Br Br
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Thus, by Hélder’s inequality,

1
1 2
+ +11-p/2 +\p
Hu HL‘X’(BeR) < C{ [(1 — H)R]"/Q Hu HLOO(BR) (/BR<U ) d*qj) + HfHLq(BR)}

1 1 P
< §||U+||L°°(BR) + O{W </BR(“+)p dx) + ||f||Lq(BR)}'

Set h(t) = ||u'||Le(m,) for t € (0,1] so that the previous estimate can be rewritten as

C

h(r) < m

h(R) + ||u+||Lp(Bl) + C||fllzap,) forany 0 <r < R <1

1
2
We apply Lemma from below to get forany 0 <r < R <1

C

"= m—

[uH ey + Cllf llLas,)-
Let R — 17. Hence, for any 0 < 6 < 1 we get the desired estimate

™[ Lo (By) < ( |u™ Loy + Cllf || La(sy)-

L= o)
[l

At the end of the proof, recall that we invoked the following lemma whose proof can be
found in [16].

Lemma 3.15. Let h(t) > 0 be bounded in |1, 71| with 79 > 0. Suppose for 1o <t < s <1
we have

h(t) < Oh(s) + +B

(s —1)*
for some 0 € [0,1). Then for any 7o <t < s < 7 there holds

(s —t

A
h(t) < c(oz,@){—)a + B}
Moser’s iteration can again be applied to prove a closely related high integrability result.
We omit its proof but refer the reader to [16] for the details.

Theorem 3.28 (high integrability). Suppose a¥ € L>®(B,) and ¢ € Lz (B,) satisfy the
following assumption:

A|€|2 S aw(x)fzé] S /\|§|2 fOT’ any x € Blaf € an
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for some positive constants A and A. Suppose that v € H'(By) is a subsolution in the
following sense:

/ a”(z)Dyu D + c(x)up dv < fodx
Bl Bl

for any non-negative ¢ € Hy(By). If f € LY(By) for some q € [;25,%), then u™ € LY (By)

loc
1

for qi* =4 % Moreover, there holds

s < C{ Nty + 1 F o, }

where C'= C(n, A\, A\, q,€(K)) is a positive constant with

)= (/{|c|>K} |C|g) "

3.7.4 Holder Regularity: De Giorgi’s Approach

3

For simplicity, we establish the Holder continuity of weak solutions to homogeneous equations
without lower-order terms,

Lu=— i D; (a”(z)Dju) in B;(0) C R,
ij=1
where a/ € L>(By) satisfies
NEP < a(2)&& < AJE)? for all 2 € By(0) and € € R”
for some positive constants A and A.
Definition 3.10. The functionu € H} (By) is called a subsolution (resp. supersolution)
of the equation Lu = 0 if

/ a”’(z)Diu Do dx < 0 (resp. > 0) for all non-negative ¢ € Hy(By).
By

First, we will need the following, which indicates that monotone convex mappings pre-
serve subsolutions and supersolutions. The proof follows from a direct computation and we
omit the details (cf. [I6] for the proof).

Lemma 3.16. Let ® € C'(R) be conver. Then

loc

(1) If u is a subsolution and ®" > 0, then v = ®(u) is also a subsolution provided that

(ii) If u is a supersolution and ®" < 0, then v = ®(u) is a subsolution provided that
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Next is a Poincaré type inequality. But unlike the more common Poincaré inequalities
that assume u belongs to Hj(Bj) or an inequality that involves the difference between u
and its average, this version says that if w € H'(B;) vanishes in a measurable portion of the
domain, then it can be controlled by its gradient in L2

Lemma 3.17 (Poincaré-Sobolev). For any € > 0 there exists a constant C' = C(e,n) such
that for v € H'(By) with u({x € By |u = 0}) > eu(By), there holds

/ u*dr < C | |Dul?dx.
Bl Bl
Proof. Suppose the contrary. Then there is a sequence {u,,} C H'(B;) such that

p({x € By |u=0}) > eu(By), / u?, dr =1, | Dtpp|? dz — 0 as m — oo.
Bl Bl

Hence, we may assume u,, — ug € H'(B;) strongly in L?(B;) and weakly in H'(By).

Clearly, ug is a non-zero constant. Thus,

0= lim U — uo|* dz > lim Uy, — o|? d
m—oo [p m—00 J, 0}

> |ug|? inf p({un, = 0}) >0,
which is a contradiction. O

If u is some positive weak solution, or more generally a supersolution, and it is bounded
uniformly away from zero in a measurable portion of the domain, then we can use the
previous two lemmas to prove that u is locally bounded away from zero.

Theorem 3.29 (Density). Suppose u is a positive supersolution in By with
ul{z € Bylu> 1)) = eu(By).
Then there ezists a constant C' depending only on €, n, and A/ such that

inf u > C.

By 2

Proof. We may assume that uw > 6 > 0. Then let 6 — 0. By Lemma [3.16 v = (logu)~ is
a subsolution, bounded by log 6~!. Then Theorem implies

1

3
supv < C (/ |v|2dx) .
By 2 By

Observe that u({x € By |v=10}) = p({z € By|u > 1}) > eu(By). Lemma implies

1
supv < C (/ \Dv\zdx) : (3.99)
By 2 B
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Set p = (/u for ( € C3(Bsy) as the test function. Then
iy 2 G(\D.u D (D D
OS/CLZ](I)DZUD] (C—) d:L’: —/Qaw d{[‘+2/<—a (:B> iU JC dl’,
u U U

which implies

/C2|Dlogu|2dx§0/\DC|2dx.

Thus, for fixed ¢ € Cj(Bz) with ( =1 in By, we obtain
|Dlogul*dr < C.
B1

Combining this with (3.99)) yields

supv = sup(logu)~ < C,
Bij2 B2

which implies

c

inf u>e~ >0.

By 2

]

The preceding density theorem will be used to control the oscillation of a weak solution
u, which is the key ingredient in deriving its local Holder continuity.

Theorem 3.30 (Oscillation). Suppose that u is a bounded solution of Lu = 0 in By. Then
there exists a v = ~y(n,A/X) € (0,1) such that

oscp, ,,u < 7y 0SCp, U. (3.100)
Remark 3.15. Recall the oscillation of f over the set S is given by
oscs(f) == ilells)f(x) - ;relgf(x)
Proof. In fact, local boundedness follows from Theorem Set

ap =supu and [p = infu.
B B

Consider the solution
u— [ ap — U

or .
a1 — 51 a1 — 51

Note the following equivalence:

1 u— 1
> — < > —
1 a;—u 1
< — <— > —,
u_2(a1—|—51) a— By = 2
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Case 1: Suppose that

1 <{x € B : 2((;16—:2) > 1}) > %,U(Bl)~

qul__%l > 0 in By, we get for some constant C' > 1

Applying the density theorem to

— 1
inf = b > —,
Bipay— B — C

which implies

. 1
]13111/f2u > B+ 5(041 — ).

Case 2: Suppose that

u ({x ep AW 1}> > %M(Bl)-

al—ﬂl

Applying the density theorem as before and noting that sup Byl = infp, , —u, we obtain

1
supu < ag — = (a1 — f1).
By /2 ¢

Now set

g = supu and [y = inf u,
Bi)s Bz

and note that By > 1 and as < «4. In both cases, we have

ay — P < (1—5) (a1 = Br).

This is precisely the estimate ([3.100)) with v =1—1/C € (0, 1). O
At last, we are now equipped to state and prove De Giorgi’s Holder regularity theorem.

Theorem 3.31 (De Giorgi). Suppose Lu = 0 weakly in By. Then there holds

u(z) —u(y
supfu(@)| + sup LT o 3l s,
By/2 z,y€By /2 ‘:E - y‘

where a = a(n, A/X\) € (0,1).
Proof. The first part of the estimate follows from Theorem that is,

sup [u(z)] < C(n, A/N)|[u]|2(5,).

Bia
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We prove the second part of the estimate. Fix any two distinct points x,y € By, set
r = |z —y| and let

w(r) := oscp, (u) = supu — inf u.
By Br

By Theorem [3.30] and rescaling, we obtain that
w(r/2) < ~yw(r).
Hence, Lemma implies that
w(r) < Crw(1/2) forall 0 <r <1/2,
where o = a(n, A/X) is some number in (0,1). By Theorem [3.27, we have that

w(1/2) < sup |u(z)] < Cllul|L2(s).-

B2
Inserting this into the previous estimate yields
w(r) < Orul|r2es,),

which further implies

u(xr) —u
sup M < C(n, A/N)|ullL2(s,)-
z,Yy€By /2 ‘.1' o y‘

This completes the proof.

3.7.5 Holder Regularity: the Weak Harnack Inequality

We now state and prove the weak Harnack inequality. As a result, we derive Moser’s Harnack
inequality as a special case, and we combine it with our previous local boundedness result to
give another proof of the interior Holder continuity of weak solutions. Then, we also examine
applications of the weak Harnack inequality to obtain a Liouville type theorem and a version
of the strong maximum principles for weak solutions.

For simplicity, we only consider elliptic equations without lower order terms. Suppose
U CR" a e L®(U) satisfies

MEP < a(x)&6 < AJE)? forall 2 € U and € € R®

for some positive constants A and A.
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Theorem 3.32 (Weak Harnack inequality). Let u € H'(U) be a non-negative supersolution
m U, i.e.,

/ a’(z)DiuDjp dx > / fodx for any non-negative ¢ € Hy(U). (3.101)
U U

Suppose f € LI(U) for some q > n/2. Then for any Br C U, there holds for any p € (0, -*3)
and any 0 < 0 <1 <1,

. ! ’
o B > (s [ )
g;Ru N fllzogsr) = Rr BTRU

where C'= C(n, A\, \,p,q,0,7) is a positive constant.

The proof of the weak Harnack inequality and the result on the Hdélder continuity of
weak solutions will make use of the following result, which is a special case of the local
boundedness result of Theorem [B3.27

Theorem 3.33 (local boundedness). Let u € H'(U) be a non-negative subsolution in U in
the following sense:

/ a' (r)DiuDjp dr < / fodx for any non-negative ¢ € Hy(U).
U U

Suppose f € LUU) for some q > n/2. Then there holds for any B C U, any r € (0, R),
and any p > 0,

1
<Oy
o S Oy

where C'= C(n, A\, \,p,q) is a positive constant.

(g PRPRE [y Py

Proof of the weak Harnack inequality. We prove this for R = 1.

Step 1: We prove the result for some p = py > 0. Set « = u+k > 0 for some k > 0 to be
determined below and v = u~!. First, we derive the equation for v(x). For any non-negative
¢ € H}(By), let the function @2 be the test function in equation (3.101)). Then

/ aij(x)Diu% dx — 2/ aij(x)DiuDjﬂ_% dr > / f_% dx
By B u B U

ﬂZ
Note that Du = Du and Dv = —u?Du. Therefore, we obtain

/ aij(ZL”)DjUDz‘SD + fv()o dr < 0 where f =
B

IS

That is, v is a non-negative subsolution to some homogeneous equation. Choose k = || f|| o0
if f # 0. Otherwise, choose arbitrary k& > 0 and let k& — 0. Note || f|/ze(z,) < 1. Thus,
Theorem implies that for any 7 € (0,1) and any p > 0,

supu P < C/ u Pdex,

By
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that is, we deduce the desired estimate

igfuzo(LTU—de); :C’</BTu_pdx/BTupdx>;</BTupdx>;,

where C' = C(n, A\, A, p,q,0,7) is a positive constant. The main step here is to prove there
exists a pp > 0 such that

/ uPdy - / a dr < C(n,\, A, p,q,T). (3.102)

To show this, it suffices to prove the following claim:
For any 7 < 1,

/ el d < C(n,)\,A,p, CI)Tn or C(n>)‘7A>p7Q77—) (3'103)

T

where

w=logu— B with = |BT\_1/ log udzx,

-

since this claim and the fact that —pg|w| < £pew < po|w| would imply that

/ P dx(/ u? dr) = / e PoB glog @ dm/ e

_ / PO g / P di < C(n, A A, p, g, 7).
B, B,

To prove estimate (3.103|), we notice that it follows directly from the John-Nirenberg lemma,
i.e., Lemma [3.2] provided that we show w € BMO, i.e.,

1
—/ |lw —w,,|de < C.
rn B,

We first derive the equation for w. As before, consider 4! to be the test function in (3.101])
and assume that ¢ is non-negative with ¢ € L>*(B;) N H}(B;). By direct calculations and
the fact that Dw = 4 ! Du, we get that

/ a” (z) DywD;(we) dx S/ a’(z)DiwDjpdr + | —fodx (3.104)
B1 By B

for any non-negative ¢ € L*(Bj) N Hy(B;). Replace ¢ by ¢? in (3.104). Then Holder’s
inequality yields

|Dw|?* dx < 0( Dpldz+ [ |fl¢? dx). (3.105)

B Bi By

Furthermore, Holder’s inequality and the Sobolev embedding imply

[ 1016 e < s Wl ) < O,
1

B1
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Hence,

/ |Dw|*¢?* dz < C(n,q, )\,A)/ |Dyl|? dz. (3.106)
B1 B
Here, we can choose ¢ to be in C3(Bj). Moreover, for any Bs,.(y) C B, we can choose ¢

with supp ¢ C By (y), ¢ =1 in B,(y), and [Dyp| < 2. Then
/ |Dw|* dw < Cr"2.
Br(y)

Hence, Poincare’s inequality yields

1 1 3 1 3
- lw — wy,, | de < /2</ ]w—ww|2dx)2 < 7 (7“2/ ]Dw|2dac>2 < C.
N ) " Br(y)

™ JB,w)
That is, w € BMO and this proves the claim.

Step 2: We now verify the result for any p € (0, -5 ), but we only sketch the main steps
as it is similar to the proof of Theorem [3.27] It suffices to prove the following claim. Namely,
by the existence of py from Step 1, Moser’s iteration scheme yields, for any 0 < r; <ry <1
and0<p2<p1<%,

1 1

(/ apl dx)H S C(TL,C], )\7A7r17r27p17p2)</ ,ap2 dx)E (3107)
B B

7"1 7"2
To start, we take ¢ = 4~ ?~!n? for 8 € (0,1) as the test function in (3.101). Then, we
can establish that

1 1

|Dﬂ|2ﬁ—ﬂ—1n2 dx < C{_Q/ |Dn|2ﬂ1—,3 dr + = mn2ﬂ1—ﬁ d:E}
Bl /8 Bl /8 Bl k
Set y=1— 3¢ (0,1) and w = @/2. Then we have

C
| Dwl*n? dz < —/wQ(IDnF +) dx
/ (1 =7)e
or

2 ¢ 2 2 2
[ 1pnds < = w0 4 o) o

for some positive a > 0. By the Sobolev embedding and a proper choice of a cutoff function
with x = n/(n —2), we obtain for any v € (0,1) and 0 <r < R < 1,

1/x C 1
w dx < / w?dz,
</Br > T (=) (R—1)? Br

</ mxdx>1/w < <(1 _Cv)a (RiTF)lM(/BRmdeM

C(1 o\ 2/y 1/
< <&> (/ @ dx) (3.108)
R—r Br
for some o > 0. We may iterate this last estimate finitely-many times to get (|3.107)). O]

or
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A special case of the weak Harnack inequality is Moser’s version.

Theorem 3.34 (Moser’s Harnack inequality). Let u € H'(U) be a non-negative solution in
U, i.e.,

/aij(ﬂf)DiuDjSOdz = / fedz for any ¢ € Hy(U).
U U

Suppose f € LU(U) for some q > n/2. Then there holds for any Bg C U,

max u < C(minu + R27%Hf|\Lq(BR)>
Bry/a Bry/a

where C' = C(n, A\, A, q) is a positive constant.

The proof of Moser’s version of the Harnack inequality follows from the weak version and
Lemma 13.13l

Proof of Moser’s Harnack Inequality. Define ®(p,r) by

O(p,r) = (/ a? d:c)l/p.

r

Then (3.108) implies the estimate

D(x7,7) < (C(ll_j—f)z/’y@(%m. (3.109)
Set for m =0,1,2,3,...,
Y =Ym = X"p and ry, =1/2+ 270",
Then, by iterating estimate (3.109)), we get
B(X",1/2) < (Cx)*HHD =" "9 (p, 1).
By sending m — oo here and applying Lemma [3.13], we arrive at
supu < CP(p,1).
By)s
The desired estimate follows from this and the weak Harnack inequality. ]

Now, our goal is to establish the Hoélder continuity of weak solutions using the local
boundedness result and Moser’s Harnack inequality.
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Corollary 3.3 (Holder continuity). Let u € H(U) be a solution of the equation in U :

/ a” (x)DyuDjp du = / fdz for any o € Hy(U).
U U

Suppose f € LI(U) for some g > n/2. Then u € C*(U) for some a € (0,1) depending only
onn,q,\ and A. Moreover, there holds for any B C U

) —ul < (B (5 [ wde)” + B s}

Br

for any x,y € Brjs where C = C(n, X\, A\, q) is a positive constant.
Proof. We prove the estimate for the case R = 1. Set for r € (0,1)

M(r) = maxu and m(r) = minu.

T B’r

Then M(r) < oo and m(r) > —oo. It suffices to prove for any r < 1/2,

wr) == M(r) —m(r) < Cr“{(/ u? dx)é + HfHLq(Bl)}. (3.110)

By

Set 6 =2 —n/q and apply Theorem to M(r) —u>0in B, to get

sup(M(r) —u) < C’{ inf (M(r) —u) + T5||f||Lq(BT)}.

B'r/2 Br/2
Combining this with the definitions of the supremum and infimum, we get

inf (M(r) —u) < sup(M(r) — u)

By/2 B;./2
< Of ot (M) = )+ 7 ey | < O sup(M () = w) 7 f i
/2 /2
Hence,
M(r) = m(r/2) < C{(M(r) = M(r/2)) +1°| fllzacs,) }- (3.111)

Likewise, applying the same argument to u — m(r) > 0 in B,, we get
M(r/2) = m(r) < C{(m(r/2) = m(r)) + )| fllzacs) } (3.112)
Adding and together yields
w(r) +w(r/2) < CL () = w(r/2)) + 7)1 Flsagm

or
w(r/2) < yw(r) + Cr|l f | Lacs,)
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for some vy = (C' —1)/(C+1) < 1.
Apply Lemma with u is chosen such that a = (1 — u)log~/logT < wd. Then

w(p) < Cp™{w(1/2) + | fllzesy)} for any p € (0,1/2]. (3.113)

On the other hand, Theorem implies

w(1/2) < C’{</Bl u? dx)é + Hf”Lq(Bl)}

and inserting this into (3.113)) completes the proof of the corollary. n

3.7.6 Further Applications of the Weak Harnack Inequality
A Liouville theorem

First, we point out an application of Lemma [3.14] Namely, we can derive the following
Liouville theorem.

Theorem 3.35. Suppose u € H'(U) is a solution to the homogeneous equation in R":
/ a’(z)DiuDjpdr =0 for any ¢ € Hy(R™).

If u 1s bounded, then u is constant.

Proof. From the previous corollary, we showed that there exists a v < 1 such that
w(r) < yw(2r).

By iteration, we obtain
w(r) < vFw(2fr) =0 as k — oo

since w(2*r) < C if u is bounded. Hence, for any r > 0,
w(r) =0.
Thus, u = constant. O

Maximum principles for weak solutions

An application of the weak Harnack inequality is the strong maximum principle adapted for
weak solutions. However, we introduce some necessary definitions and consider the weak
maximum principle for weak solutions. We say that v € H'(U) satisfies u < 0 on U
if its positive part u* = max{u,0} belongs to Hj(U). Of course if u is continuous in a
neighborhood of QU then u satisfies u < 0 on QU if the inequality holds in the classical
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pointwise sense. Likewise, we say u > 0 on U if —u < 0 on U; and v < v € H(U) on U
if u—v <0ondU. As usual, we take

Lu = —D;(a"” (z) Dju)

and solutions, supersolutions, and subsolutions associated with this elliptic operator are
understood in the distributional sense.

Theorem 3.36 (Weak Maximum Principle for Weak Solutions). Let u € H'(U).
(a) If Lu <0 in U, then supy, u < supyy u™.
(b) If Lu > 0 in U, then infy u > infyy u™.

Proof. Since Lu < 0 in U in the distribution sense, we write
/ a”(z)DjuD;vdr < 0
U

for all non-negative v € H(U). If we set £ = supyy u™ and take v = max{u — ¢,0}, then
ve H)(U), Dv=Duifu—{¢>0and Dv=0if u— ¢ < 0. We proceed by contradiction.
That is, assume v > 0 or u > ¢ in some subset B CC U with u(B) > 0; otherwise, if v =0
then we would be done. Clearly, Dv = Du within B; but the positivity of (a”(x)) and the
uniform ellipticity condition imply that

/ |Dv|*dx <0,
B

and we get that v, and therefore u, is constant in a subset of U with positive measure. At the
same time, a basic result guarantees Du = 0 a.e. in this subset and we deduce a contradiction.
This completes the proof for part (a). Part (b) follows along a similar argument; namely, we
can apply the previous proof to —Lu < 0 and the fact that infp u = — supp,(—u).

]

From this, we immediately deduce a uniqueness result.
Corollary 3.4. Let u € H}(U) satisfy Lu=0 in U. Thenu=0 in U.

We are now ready to introduce the strong version of the maximum principle adapted for
weak solutions. Unlike the weak maximum principle above, we are only assuming the weak
solution belongs to H*(U). We do not assume the solution vanishes at the boundary in the
trace sense, i.e., it does not necessarily belong to H}(U). The Harnack inequality plays an
essential role in its proof.
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Theorem 3.37 (Strong Maximum Principle for Weak Solutions). Let U be a bounded and
open subset and let w € H(U) satisfy Lu < 0 in U. Then, if for some ball B CC U we have

supu = supu > 0, (3.114)
B U

the function w must be constant in U.

Proof. Denote B = Br(y) and without loss of generality, we can assume that Byg(y) C U.
Now let M = sup,; u and then apply the weak Harnack inequality (see Theorem with
p = 1 to the supersolution v = M — u. Namely, we use the following dilated version of the
weak Harnack inequality with p = 1:

R7™"|v||L1(Bypyyy < C inf w.
Br(y)

Hence,
R_”/ (M —wu)dx < C’i%f(M—u) =0
Baog

and so u = M in Bsyg. Therefore, supremum of u is attained for a larger ball in U. We can
then show w = M in U by a simple covering argument. O]

Remark 3.16. Likewise, we have an analogous result which states the solution to Lu > 0
in U is constant whenever it attains an interior minimum.
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CHAPTER 4

Viscosity Solutions and Fully Nonlinear Equations

4.1 Introduction

This chapter introduces a very weak concept of solution for second-order elliptic equations
called viscosity solutions. To simplify our presentation, the results given here are for equa-
tions involving linear elliptic operators without lower order terms, but they can certainly be
extended to fully nonlinear elliptic equations of the type

F(D*u,u,x) = f(z) in U,

where F': R™" x R x R" is usually a monotone and convex mapping possibly nonlinear in
D?u and u. For a nice introductory treatment of this topic, we refer the reader to Caffarelli
and Cabré [4].

The advantage of considering the notion of viscosity solution is it allows us to consider
elliptic equations in non-divergence form, and it extends the notion of classical solutions.
Another advantage is that viscosity solutions are stable under local uniform convergence
in both v and F' and because existence and uniqueness results for such solutions can be
obtained under far more general conditions. In fact, in the definition given below, notice
that we can make sense of such solutions without resorting to differentiating the equations
directly. This was a major obstacle in extending elliptic theory to equations having non-
divergence form, since the usual procedure of integrating by parts and treating equations
in the distribution sense was not generally possible, or the usual notions of solution was
not always guaranteed to exist in this context. Thus, finding a successful framework that
circumvents this obstacle was a tremendous breakthrough in the modern theory of elliptic
partial differential equations.
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The results we establish below should be reminiscent of those for elliptic equations in
divergence form studied earlier, however, we obtain the results via perturbation methods
relying heavily on approximation and density arguments. More precisely, we shall give a
concise introduction, develop the Alexandroff maximum principle along with a Harnack
inequality for viscosity solutions. Then we use these to develop the interior Schauder and
W?2P regularity estimates for viscosity solutions. Global versions of these regularity results
without proof are also provided at the end of the chapter.

Let U be a bounded and connected domain in R™ and (a) is of class C(U) and satisfies

MEP < a(2)6&; < Al
for any x € U and any £ € R™. We consider the operator L in U defined by

Lu=— Z a”(z)Diju for u € C*(U). (4.1)

ij=1
Throughout, we shall assume that f belongs to C'(U).

Definition 4.1. The function u € C(U) is said to be a viscosity supersolution (respec-
tively viscosity subsolution) of the equation

Lu=f in U (4.2)

if for any xy € U and any function o € C*(U) such that u — ¢ has a local minimum
(respectively, local mazimum) at xy there holds

Lg(xo) = f(wo) (respectively, Le(xo) < f(xo))-
The following definition of solution should be compared with the result of Theorem [1.10]

Definition 4.2. We say u € C(U) is a viscosity solution of equation (4.1)) if it is both a
viscosity subsolution and a viscosity supersolution.

Remark 4.1. By density, the C? function ¢ in the above definitions may be replaced by
quadratic polynomials.

Next we look at the class of all solutions to all elliptic equations. First we make the
following important observation. Let eq, es, ..., e, be the eigenvalues of the Hessian matrix
D%p(z0) where ¢ is any C? function at 2o € U. We have the following chain of equivalent
estimates:

n

Z a” (o) Dyjip(0) < 0 <= Zo‘iei <0 for a; € [A A,

ij=1 i=1
< Z a,e; + Z ae; <0,

e; >0 e; <0
< E ozieig E ai(—ei),
e; >0 e; <0
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where the last line implies

A Z ae; <A Z a;(—e;).

e; >0 e; <0

Namely, if u is a “supersolution,” then the positive eigenvalues of the Hessian matrix D?p(x)
are controlled by its negative eigenvalues. This motivates the following definition.

Definition 4.3. Suppose f € C(U) and A and A are two positive constants. We define
u € C(U) to belong to ST(\, A, f) if for any xy € U and any function ¢ € C*(U) such that
u — @ has a local minimum at xq, there holds

A Z ei(azo)+AZei(a:o)2f(£Uo),

ei(x0)>0 e; <0

where ey (o), e2(xg), ..., en(x0) are eigenvalues of the Hessian matriz D*¢(x).
Similarly, we definew € C(U) to belong to S~ (A, A, f) if for any xg € U and any function
o € C*(U) such that uw — ¢ has a local mazimum at xo, there holds

A Z ei(zo) + A Z ei(zo) < f(xo).

ei(z0)>0 e;<0
We denote S\ A, f) =ST(MA, /) NS (N A, f)

Notice that any viscosity supersolution of belongs to the class ST (A, A, f). In fact,
the class ST(A\, A, f) and S~ (A, A, f) also include solutions to fully nonlinear equations such
as the Pucci equations.

We say the matrix A = (a”) belongs to the class Ay, with any two constants A\, A > 0
if A is symmetric and

MNEP < a(2)6& < AJEJ? forz e U, £ € R

so that its eigenvalues belong to [A, A].
Now, for any symmetric matrix M = (m%), we define the Pucci extremal operators:

M= (M) =M (\A,M)= inf a“m",
AEA)\’A
MFT(M) = MY\, A, M) = sup a’m".

AEA)HA

Then Pucci’s equations are given by
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for some functions f, g € C(U). Indeed, we can show that

MOAM) =2 e+ AN e

e; >0 e; <0
MT(N A, M) AZGZ+)‘Z€Z’
e; >0 e; <0
where eq, es, ..., e, are eigenvalues of M. Hence, u € ST(\, A, f) if and only if

M~ (N A, D?u) < f

in the viscosity sense, i.e., for any ¢ € C*(U) such that u— ¢ has a local minimum at zy € U
there holds
M\ A, D*p(x0)) < flo).

An analogous statement holds for u € S™(A, A, f) and viscosity subsolutions.

By definition of M~ and M™, we can check that for any two symmetric matrices M and
N

Y

M= (M) + M~ (N) < M~ (M + N) < M*(M) + M~(N)
< M*(M + N) < M*(M) + M*(N).

This will be an important property we invoke later in establishing the regularity of viscosity
solutions. We now establish the Alexandroff maximum principle for viscosity solutions,
and we may think of it as a replacement of the energy inequality for weak solutions to elliptic
equations in divergence form. The Alexandroff maximum principle is sometimes called the
Alexandroff-Bakelman-Pucci or ABP estimate. First, recall that L defined in R" is said
to be affine if

L(z) =ty + {(z),

where ¢y € R and / is a linear function. We denote the convex envelope of a function v
defined in U by

I'(v)(z) =sup{L(z) : L <wv in U, L is an affine function}
L

for any « € U. The function I' is indeed a convex function on U, and it is the largest possible
affine function below of v. Moreover, the set of points x in which I'(v) touches v from below,
i.e., the set {v = T'(v)}, is called the (lower) contact set of v. The points in the contact set
are called contact points. The following lemma is the Alexandroff maximum principle and
note that u is not required to be a solution to any elliptic equation. The classical version is
stated as follows, which we provide without proof (see Lemma 3.4 in [4] and Section 9.1 in
[13] for detailed proofs).
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Lemma 4.1. Suppose u is a CY! function in By with u >0 on 0B,. Then
1/n

supu~ < C(n)(/B o }det(DQu) dx) :
1Mu=Iy

B1
where T, is the convex envelope of —u~ = min{u, 0}.

The version of this for viscosity solutions is the following, which we will prove with the
help of Lemma [4.1]

Theorem 4.1 (Alexandroff Maximum Principle). Suppose u belongs to ST(\, A, f) in By
with u >0 on OBy for some f € C(U). Then

1/n
supu~ gC(n,)\,A)(/ { }(f+)ndx) ,
Bin{u=TI,

B1
where Ty, is the convexr envelope of —u~ = min{u,0}.

Proof. The goal is to ultimately apply Lemma to the convex envelope I',(z). Namely,
we need to prove that I', belongs to 01,1(31) and at a contact point xy, we have that

f(z0) 20 (4.3)

and
L(z) < Ty(x) < L(x) + C(n, \, A)(f(z0) + €(x))|z — 20/ (4.4)

for some affine function L and any x sufficiently close to xy with e(x) = o(1) as x — x.
Once we prove this claim, clearly (4.4) implies that

det(D?T,)(z) < C(n, A\, A) f(z)" for a.e.z € {u=T,}.

So Lemma {.1] applied to the function I', implies the result. Therefore, it remains to prove
the claim.

Let xy be a contact point, i.e., u(xg) = I'y(zo). Without loss of generality, assume xy = 0.
We may also assume, after subtracting a supporting plane at xq = 0 if necessary, that u > 0
in By with u(0) = 0. Take h(z) = —¢|x|?/2 in By. Clearly, u — h has a minimum at 0,
and note that the eigenvalues of D?h(0) is just —e with multiplicity n. By definition of
ST\ A, f), we have that

—nAe < f(0).

We obtain (4.3)) after sending ¢ — 0 in the preceding estimate.
Finally, to obtain estimate (4.4]), we will prove

0 < Tyu(z) < C(n, A\, A)(f(0) + e(x))|z|* for = € By,
where €(x) = o(1) as x — 0.
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We need to get an estimate for

C, = —maxI,
r? B,

for small » > 0. By convexity, I', attains its maximum in the closed ball B, at some point on
the boundary, say at (0,...,0,7). Now the set {z € By : T',(z) <T',(0,...,0,7)} is convex
and contains B,. Hence,

Lu(2',7) >T,(0,...,0,7) = Cyr? for any x = (2/,r) € By.
Choose a positive number N to be specified at a later time. Set
R, ={(2',x,) : |2'| < Nr, |x,| <7}

We construct a quadratic polynomial that touches w from below in R, and curves upward
very steeply. Set, for some b > 0,

h(x) = (@n +7)* = bla'|*.
Then,
(a) for x, = —r, h < 0;
(b) for |2'| = Nr, h < (4 — bN?)r? < 0 if we take b = 4/N?;
(c) for x, =r, h =4r? — b|a’|* < 4r?.

Therefore, if we take

and since T, is the convex envelope of u, we have h < I',, < u on dR,. Moreover, iNL(O) =
Crr?/4 >0 =T,(0) = u(0). Then, after lowering h if necessary, we deduce that u — h has a
local minimum in the interior of R,. It is easily checked that the eigenvalues of D?h are

C,/2,—-2C,/N? ..., —2C,/N>.
Hence, by definition of ST(A, A, f), we have that

C, C,
L — — <<
A 5 2A(n 1)N2 < H}guxf.

We can now choose N suitably large, which depends only on n, A and A, so that
2A(n —1)/N* < )\ /4.
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Thus, we obtain

Cr <

4 4
3, Max f; that is, H}B%XF“ < sz max f

Hence,

4
Fy(z) <maxT, < XE(T’)TQ,

T

where €(|x|) = €(r) = maxg, f = o(1). This completes the proof.
[

Finally, we end this section with a basic result as a consequence of the Calderon-Zygmund
decompostion. We will need this result when establishing the Harnack inequality and the
regularity theory for viscosity solutions. Here we work in dyadic cubes rather than balls.
(2 denotes such a dyadic cube after refinement of a given Euclidean domain. We often use
Q) to denote a dyadic cube centered at xy € R™ with side length ¢. Sometimes we omit

xo if g =0, i.e., Qu(0) = Q.

Lemma 4.2. Suppose the measurable sets A C B C Q1 have the following properties.
(a) |A| <6 for some d € (0,1);

(b) for any dyadic cube Q, |AN Q| > 8|Q| implies Q C B for the predecessor Q of Q.
Then |A| < |B|.

4.2 A Harnack Inequality

Theorem 4.2 (Harnack inequality). Suppose u belongs to S(\, A, f) in By with u > 0 in
By for some f € C(By). Then

sup u < C’( inf u + HfHLn(Bl)> (4.5)
By o B2

where C' is a positive constant depending only on n, X and A.

As we have encountered already, Harnack type inequalities imply the interior Holder
regularity of solutions. Thus, we have the following result whose proof we omit but follows
similarly to that of Corollary

Corollary 4.1. Suppose u belongs to S(A\, A, f) in By for some f € C(By). Thenu € C*(By)
for some o € (0,1) depending only on n, A\, and A. In particular,

ju(z) —u(y)| < Ol — oI (supul + [ fllsoon)) for any 2.y € Byjo
1
The main ingredient in proving the Harnack inequality is the following result.
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Proposition 4.1. Suppose u belongs to S(\, A, f) in Qq 5 with u > 0 in Qu 5 for some
f € C(Quym). Then there exist two positive constants ey and C, depending only on n, X, and
A, such that if

inf u<1 and n < €,

it <1 and | flie, <o

then

supu < C.
Q14

To see how Theorem follows from this, consider the function

u

| . (5> 0),
infg, ,u+0+¢€ 1HfHL"(Q4\/z)

us =

provided that v € S(\, A, f) in Q4 with u > 0 in Q4 5. Applying Proposition to us
then sending 6 — 0, we get

sup u < C’(lnf U+ ||l @y ym)-
Q14 Quy

Then estimate (4.5) follows from a standard covering argument.

Lemma 4.3. Suppose u belongs to ST(\, A, f) in By s for some f € C(Byz). Then there
exist constants g > 0, u € (0,1), and M > 1, depending only on n,\, and A, such that if

u>0 in By, mfu <1 and HfHLn(B2f < €, (4.6)

then
Hu < M}NQq| > p.

Proof. The idea here to localize where the contact set occurs by choosing suitable functions.
Namely, we construct a function g that is “very concave” outside (); so that if we “correct”
u by g, the contact set is in Q1. First note that By C Byjp C Q1 C Q3 C By . Define g
in B, s by

g(x) = —M(1 - [2]?/4n)’

for some 5 > 0 to be specified later and some M > 0. We choose M with respect to 3 so
that
g=0 on 0B, /5, and g < -2 in Q3. (4.7)

Set w = u + g in By ;. We shall prove that w, in particular g, belongs to S*(X, A, f) in
By /7 \Q1 provided we choose 3 large enough. Suppose ¢ is a quadratic polynomial such that
w — ¢ has a local minimum at zy € By 5. Then u — (¢ — g) has a local minimum at z, as
well. By definitions of St (A, A, f) and the Pucci extremal operator M~

M= (N A, D*p(0) — D?g(0)) < f(0),
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or

M (A A, D*p(x0)) + M~ (X, A, —=Dg(w0)) < f(z0)-

Therefore, to show g belongs to ST(A, A, f) in B, 5 \Q1, it remains to show M~ (X, A, —D?g(z))
is non-negative. Well, the Hessian matrix of g is given by

Dyjg(x) = (MB/2n)(1 — |x*/4n)"d;; — [MB(B — 1)/ (2n)*|(1 — |=[*/4n)*z;z;.
Choose z = (|z|,0,0,...,0), then the eigenvalues of —D?g(z) are given by
et = (MB/2n)(1 — |x|*/4n)°2((28 — 1)|=|*/4n — 1) with multiplicity 1,
e~ = — (MpB/2n)(1 — |z|*/4n)?? with multiplicity n — 1.

Now choose /5 > 0 large enough so that et > 0 and e~ < 0 for |x| > 1/4. Thus, for |z| > 1/4,
we have

M~(\ A, —D?*g(x)) = et (2) + (n — 1)Ae (z)

_ ]2”_5(1 — Jaf?/4m)* 2 A

> 0.

20 —1
4n

22~ 1) = (n = DAL~ |af?/4n)|

In fact, we have actually proved that
weSTI\A, f+1n) in By m

for some n € C§°(Q1) and supp(n) C [0, C(nA, A)]. We may apply the Alexandroff maximum
principle (Theorem to w in By 5. Also note that infg, w < —1 and w > 0 on 9B, 5

due to (4.6) and (4.7)). Thus,

1/
<e( (11 + )" da)
By mM{w=T"w}
< Cllf lzn(,ym + CHw =T} N QY™
Choosing ¢; small enough, we get
(1/2) < C{w =T} NQu"" < CH{u < M} N Qi7"

since w(x) = I'y(z) implies w(z) < 0 and thus u(z) < —g(z) < M. This completes the
proof.
[

Next we derive the power decay property of the distribution function of w.
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Lemma 4.4. Let u belong to ST(N\, A, f) in By s for some f € C(By ). Then there exist
positive constants €y, € and C, depending only on n, A, and A, such that if

uw>0in By 4, infu<1 and [|f|inB, ) < €o, (4.8)
Q3 2vn

then
Hu>t}NnQq < Ct™ for t > 0.

Proof. Under the assumptions (4.8)), we claim
Hu > My Qi < (1—p)* for k=1,2,..., (4.9)

where M and p are the same parameters from Lemmal[4.3] We proceed by induction. Indeed,

for k =1, (4.9) is just Lemma So assume ([4.9)) holds for k — 1. Set A = {u > M*} N Q,
and B = {u > M*'} N Q,. We claim that

A< (1-p)B (4.10)

We do so by using Lemma [1.2] Clearly, A C B C @ and |[A] < |[{u>M}NQ:| <1—pby
Lemma [4.3] We claim that if Q@ = Q,(xo) is a cube in @Q; such that

AN Bl > (1 - p)lQl, (4.11)

then Q N Q, C B for Q = Qs,(xy). We prove this by contradiction. Consider the transfor-
mation x = xg + ry for y € Q1 and = € Q = @Q,(xp), and the function

a(y) = M~* Du(z).
Then @ > 0 in By s and infg, @ < 1. It is easy to check that & € ST(A A, f) in By 5 with
Hf”Ln(BQﬁ) < €. In fact,

~ 1”2

fly) = Wf(l') for y € By -

Hence,

< r
1l By < WHJCHLW(BQW < | fllen(sy sz < €o

Therefore, @ satisfies (4.8]). Thus, Lemma applied to u implies
p<aly) < Myn@i| =r"Hu(x) < M} NnQl.

Hence, |Q N A¢| > u|@|, but this contradicts with (4.11]). Applying Lemma yields
@.10). O
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Proof of Proposition [4.1. We show there exist two constants § > 1 and My > 1, depending
only on n, A, and A, such that if u(zy) = P > M, for some x¢ € By, there exists a sequence
{@r} C Bz such that

u(zy) > 0FP for k=0,1,2,....

This contradicts with the boundedness of u and thus sup By U < M,.

Suppose u(zg) = P > M, for some xg € By/4. We will determine M, and 6 in the process.
Consider a cube Q,(x) centered at xy with side length r, which will be specified below. We
want to find a point z; € Q4 /(7o) such that u(z,) > 6P. To do so, we choose r such that
{u > P/2} covers less than half of Q,(xy). This can be done using the power decay of the
distribution function of u (see Lemma . Namely, since info, u < infg, ,u < 1, Lemma
implies

{u> P2 N Qu| < C(Pf2)
We choose r such that r"/2 > C'(P/2)~¢ and r < 1/4. Hence, we have, for such r, Q,(z) C
Ql and
1
GXE )||{u>P/2}ﬂQr(x0)| <1/2. (4.12)
Next we show that for 6 > 1, with 6 — 1 small, u > 0P at some point in Qy /n,(70). We
proceed by contradiction. That is, assume u < 6P in Q4 /. (20). Consider the transformation

v =r+ry for Qum and x € Q4 (20)

and the function

_ . 0P —u(x)

u(y) = S
Clearly, & > 0 in B, s, and 4(0) = 1, and thus infg, @ < 1. Tt follows that @ belongs to
ST\ A, f) in B, /m with 11|z (Byym) < €0- Indeed, we have

~ ?”2

fly) = —mf(x) for y € By

and so .
n < ——— n <
[alr? (Baym) = 0 — 1>PHfHL (Byym) = €0
provided we choose P so that r < (6 — 1)P. Applying Lemma to @ and noting that
u(x) < P/2 <= u(y) > (0 —1/2)/(6 — 1) > 1 provided that @ is close to 1, we get
1

GG S PN Q)| = a2 (0= 1/2/@ -1}

< OB —-1/2)/(0 — 1)) < 1/2.

This contradicts with (4.12). Hence, we deduce the existence of a § = 0(n, A\, A) > 1 such
that if
u(xg) = P for some g € Bya,
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then
u(z1) > 0P for some 1 € Qy /- (70) C Bonr(0)

provided that
C(n, \,A)P~/" <r < ( —1)P.

Specifically, we need to choose P such that P > (C/(8—1))" ("9 and then take r = C P~/
[terating the previous result yields a sequence {xj} such that of for any £k =1,2,3,...,

u(xy) > %P for some xy € By, (T1-1)

where 7, = C(9F~1P)=</n = CH~(=De/n p=e/n,
To ensure {z;} C B2, we take ) 2nry, < 1/4. Hence, we choose M, so that

e/n - —(k=1)¢/n ( C )n/(n—i-e)
M, > 8 0 d My > (——
o> 8n kz:; an =

9

and choose P > M. This completes the proof. O

4.3 Schauder Estimates

In this section, we prove the Schauder estimates for viscosity solutions. Throughout this
section, we always assume that a”(z) € C(B;) satisfies

MEP < a¥(2)&&; < Al

for any z € B; and any £ € R™.

We shall need the following approximation result. Namely, it states that if the coefficient
matrix (a”(z)) is a “close” perturbation of the constant matrix (a”/(0)) and thus is “close”
to the identity matrix by the uniform ellipticity assumption, then the viscosity solution u is
“close” to a solution of a Poisson equation at least locally.

Lemma 4.5. Suppose uw € C(By) is a viscosity solution of
a’(z)Dijju = f in B
with |u] <1 in By. Assume for some € € (0,1/16),
la? = a" (0) ][z (By,0) < €.

Then there exists a function h € C(Bss) with a”(0)Dy;h = 0 in Bsjy and |h] < 1 in By
for which
[ = llzee (B, ) < C(€ + [ fllznay)

where C' > 0 is a constant and v € (0,1) both depending only on n, A, and A.
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Proof. We can certainly solve for such a harmonic function h € C(Bs/4) N C>(Bs/4) where
a’(0)D;jh = 0 in Bsjy and h = u on 9Bsyy. The maximum principle ensures |h| < 1 in
Bs,, and note that u belongs to S(A, A, f) in B;. Corollary implies u € C*(Bs4) for
some a = a(n, A\, A) € (0,1). Thus, from the global Schauder regularity theory for harmonic
functions, the basic estimate

[ullga(s,,y < Clr, A M)A+ || fl[Ln(sy))

implies
12llcarzz,,) < Cllulleas,,y < Cln, A M)A+ ([ fllns))-
Since u — h = 0 on 0Bj,4, we get for 6 € (0,1/4),

lu = All =5y, 5) < CO*(1+ || fllni))- (4.13)

We claim that
| DAl Le(08y),_5) < CO*72(L+ || fllLeis))- (4.14)

In fact, for any 2o € Bs/4_s, applying interior C? estimates on h — h(x1) in Bs(xg) C Bsjs
for some x; € dBj(xo) yields

|D?h(x0)| < C672 sup |k — h(z1)| < CS25(1 + || |l Lo (ay))-

Bs(zo)

Note that u — h is a viscosity solution of
a”(z)Dyj(u — h) = f(z) = (a”(z) — a”(0))Dyjh := F in By
So by the Alexandroff maximum principle and (4.13))-(4.14]),

[[u — hllpec ) < lu— hlleBsy,,_s) + ClIF|

<l = Rl zoe(By,4_s) + CIID?| oo By, p) la”? — a™ (0]l Lr(sy,0) + Cll | (m0)
< C(6 4+ 62 ) (L + || fllr (1) + Cllf Nl Lnisn)-

Bs4_s B3/a_s)

The proof is complete once we take § = /e and then v = /4.
O

Definition 4.4. A function g is Holder continuous at 0 with exponent « in the L™ sense if

e (0 = sup (57 [ 1ote) = g0 az) " < o

o<r<1 T
Theorem 4.3 (Schauder estimates). Suppose u € C(By) is a viscosity solution of

a’(z)Diju = f in By.
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Assume (a¥) is Holder continous at 0 with exponent a in the L" sense for some a € (0,1). If
f is Hélder continuous at O with exponent o in the L™ sense, then u is C** at 0. Moreover,
there exists a polynomial P of degree 2 such that

|u — P|re(B,(0)) < C.r** for any r € (0, 1),
|P(0)] + [DP(0)| + | D*P(0)] < C,,
Cy < C([lullzeemy) + [£(0)] + [fleg, (0)),

where C' > 0 is a constant depending only on n, A\, A, and [a"]ce, (0).

Proof. We organize the proof into two steps.

Step 1: Preparations We assume f(0) = 0 otherwise we may consider v = u—b“z;xz; f(0)/2
for some constant matrix (b¥) such that a”(0)b” = 1. By scaling, we also assume that
[a]ce, (0) is small. Next, by considering for § > 0,

u
[ull Lo (y) + 07 flog, (0)

we may also assume [|u|z=(p,) < 1 and [f]oe, (0) < 6.
Step 2: Suppose u € C(By) is a viscosity solution of

aij(x)Diju = f in Bl

with
[ull ey < 1, [a]ce, (0) <6
and

1 1/n
(ﬁ/ ik dx) < or® for any r € (0,1).
T B

We claim there exists a constant 6 > 0, depending only on n, A, A, and « and a polynomial
P of degree 2 with
lu— P||zoo(p,) < Cr*** for any r € (0, 1), (4.15)

and
|P(0)] + |DP(0)] + |D2P(O)| < C(n, \ A, «). (4.16)

First, we show there exist p € (0,1), depending only on n, A\, A, and «, and a sequence
of polynomials of degree 2,

Py(z) = ap + b - + (1/2)2" Cya,
such that for any £ =0,1,2,...,

a’(0)Dy; P, = 0, |lu — PkHLDO(BHk) < ke, (4.17)
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and
‘Cbk — CLk71| + ,ukilybk — bkfly + /L2(k71)|ck — Ck,ﬂ S C/,L(kil)(yra). (418)

Note that Py, P_; = 0 and C' is a constant depending only on n, A\, A, and «.
Obviously, the theorem follows from (4.17))-(4.18) since ay, by and Cy converge to some
a, b and C'; and the limiting polynomial,

Px)=a+b-x+ (1/2)2"Cx,
satisfies
|Pu(z) = P(x)] < C(lap* + |a|ptHDF 4 po2F) < Cprer
for any |z| < p*. Hence, for |z| < u*,
lu(z) = P(2)| < |u(z) = Pi(2)] + |Pe() — P(a)] < O+,
which implies
lu(z) — P(z)| < C|z|*™™ for any = € B;.

Therefore, it only remains to prove (4.17)) and (4.18]), and we do so by induction. The initial
step k = 0 is clearly true. Assume both estimates hold for £k = 0,1,...,¢. We prove the next
step kK = £+ 1 holds. Consider the function

1

u(y) = W(U — P)(u'y) for y € By.

Then @ belongs to C'(By) and is a viscosity solution of

a’(z)Dyi = f in By
where
a”(y) = p~"a" (u'y),
and
fly) = =" (f(u'y) — " (u"y) Di; ).
We want to apply Lemma [£.16] So we check that

3 = ()| < p~la” = a¥(0)l|zes,0 < [a7]54(0) <6,

and
1Fllenim) < 07N fllines o) + 0~ sup |D*Rol[|a” — a”(0)||pnes,,) < 6+ C8

where we used

l l
|D*P| <Y |D*P, — D*Py| <Y pF Ve < C
k=1 k=1
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Taking € = C(n, A\, A)§ in Lemma[4.16] we can find h € C(Bs,4) with a”(0)D;;h = 0 in Bsy
and |h| <1 in By, such that

@ — hllLe(B,,,) < Ce +¢€) < 2C€.
Write P(y) = h(0) + Dh(0) + y” D2h(0)y/2. Then the interior estimates for h yield
@ = Pllres,) < 1@ = hlles, + B = Pllies,) <20 + Cp® < p**®
by choosing 1 small and then e small accordingly. Rescaling back, we get
lu(x) — Pyz) — pfCrIP(pta)| < ) for any z € Bt
This implies for k = ¢+ 1 if we take
Pypa(2) = Pe() + ' P(u™"x).
Estimate follows easily. O]

We also have the following Cordes-Nirenberg type estimate, but we omit its proof.

Theorem 4.4 (Cordes-Nirenberg). Suppose u € C(By) is a viscosity solution of
a’(z)Dijju = f in B;.

Then for any o € (0, 1), there exists an 6 > 0 depending only on n, \, A, and « such that if
1 i ij (| 1/n
(ﬁ | la(@) ¥ (0) dz) " <6 forany f € (0,1),

then u is C%* at 0. Namely, there exists an affine function L such that

lu — LlLoo(BT(O)) < O, rite for any r € (0,1),
|L(0)[ + |DL(0)| < C,

. < Ol + s (7 [ @),

<r<1

where C' > 0 is a constant depending only on n, A\, A, and «.

4.4 W?*P Estimates

In this section, we assume throughout that f € C'(By), (a¥) € C(By) and there exist A, A > 0
such that
NE? < a(2)6:65 < AJ¢f?

for any z € U and any £ € R”. Our main result here is the following
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Theorem 4.5. Suppose u € C(By) is a viscosity solution of
a’(z)Dju= f in By.

For any p € (n,00), there exists an € > 0 depending only on n, A\, A, and p such that if

1 . . 1/n
(m b ¥ (x) — a” (xo)[" dfﬂ) < e for any B, () C By,

then w € W2P(By). Moreover,

loc
[ullw2(B,,5) < Cllulle) + [[fllLr),
where C' > 0 is a constant depending only on n, \, A, and p.
As before, it suffices to prove the following.
Theorem 4.6. Suppose u € C(Byg, ;) is a viscosity solution of
a”(x)Dyju = f in Bg g

For any p € (n, ), there exist € > 0 and C > 0 depending only on n, A\, A, and p such that
if

HUHLOO(BSﬁ) <1 and HfHLp(Bs\/ﬁ) <e
and if

1 . . 1/n
<|B (o) /B (o) la" (x) — a" (xo)[" dx) <€ for any B,(vy) C By,
T (xo

then u € W*P(By) and ||ullw2rp,) < C.
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CHAPTER b

The Method of Moving Planes and Its Variants

In this chapter, we introduce a powerful tool used to study the properties of solutions for
semilinear elliptic equations. The method is called the method of moving planes and it
originated from Alexandroff in his study of embedded constant mean curvature surfaces.
It was further developed in the works of Serrin [30] and Gidas, Ni and Nirenberg [12] and
later adapted to many other problems involving differential and integral equations (see [6]
and the references therein). We will focus on applying this method to obtain symmetry
and monotonicity results for positive solutions of the Lane-Emden equation and we shall
essentially adopt the framework of Chen and Li [5].
Consider the following semilinear elliptic problem

—Au=uP, z€R" n>3. (5.1)
Our goal is to prove the following main result.

Theorem 5.1. Forp = (n+2)/(n—2), every positive C? solution of equation (5.1) must be
radially symmetric and monotone decreasing about some point, and thus assumes the form

— 2\ T
[n(n = 2)\ 4n_2 for some A >0 and 2° € R".
(A2 + |z —202) "2~
For1<p< (n+2)/(n—2), the only non-negative C* solution of equation (5.1)) is the trivial
one, u = 0.

u(r) =

5.1 Preliminaries

We first start by introducing some necessary tools for the method of moving planes. Namely,
we introduce the Kelvin transform and various comparison theorems, i.e., maximum princi-
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ples, for elliptic problems on unbounded domains. First, the Kelvin transform of the function
u, which we denote by u, is given by

3 1 T
7o) = e ()
Then, if u is a solution of equation (/5.1]), then @ is a solution of
—AG = [P0 2gp e R™M\{0}. (5.2)

Now we revisit some variants of the maximum and comparison principle, which are essen-
tial ingredients in the method of moving planes. These results have been covered in Chapter
[, but we state them again here for convenience. The first theorem is an extension of Hopf’s
Lemma and the strong maximum principle for domains that are not necessarily bounded
and for lower order terms that need not be positive (note this version holds for the Dirichlet
problem involving a perturbed operator of the Laplacian). The second theorem is the max-
imum principle based on comparisons, which was stated and proved earlier in Section |1.2.2
of Chapter [T We state it here for convenience.

Theorem 5.2 (Maximum principle and Hopf’s lemma for possibly unbounded domains).
Let U be a domain in R™ with smooth boundary U, and assume u € C*(U)NC(U) satisfies

u=20 on OU, (5-3)

{ —Au+ >0 b(x)Diu+c(z)u>0 inU,
where b'(x) and c¢(z) are bounded functions. Then the following hold.
(a) If u vanishes at some point in U, then u=0 in U;

(b) If u is non-trivial in U, then Ou/0v < 0 on OU.

The next result is a useful comparison principle that applies to possibly unbounded
domains.

Theorem 5.3 (Maximum principle based on comparisons). Assume that U is a bounded
domain. Let ¢ be a positive function on U satisfying

—A¢+ \z)é > 0. (5.4)

Assume that u is a classical solution of

—Au+c(z)u>0 inU,
{ u>0 onJU. (5:5)
If
c(x) > Mz) forall x €U, (5.6)
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then
u>0 i U

If U is unbounded, then the result remains true provided that the following additional
condition 1s assumed:
u(2)

}%ﬁgaGSZQ (5.7)

In our application of the above theorem, we will consider two cases:
(a) U is a “narrow” region,
(b) the coefficient ¢(z) has sufficient decay at infinity.

First, we examine when U is a narrow region; namely, let us consider the narrow strip with
width ¢ > 0, i.e.,

U={zeR"|0<x </}
We can take ¢(x) = sin((z; + €)/f) so that —Ap = (1/£)*p. Thus, A(z) = —(1/¢)?, which

can be “very negative” if ¢ is suitably small.

Corollary 5.1 (Narrow region). If u satisfies ((5.5)) with bounded function c(x), the width ¢
of the region U is sufficiently small, c(x) satisfies (5.6)), i.e., c(x) > N(x) = —1/¢2, then

u>0 i U

In the case of (b) with n > 3, we can choose a positive number ¢ < n — 2 and take
¢(z) = |z|79, then a simple calculation yields

_A¢:qm—2—@

|z[?
Therefore, if ¢(x) has sufficient decay, the previous theorem implies the following.

Corollary 5.2 (Decay at infinity). Assume there exists R > 0 such that

q(n —2—q)
|2[2

c(x) > — , for all |z| > R. (5.8)

Suppose that
lim u(x)|z|? = 0.
|z| =00

Let U be a region contained in B$(0). If u satisfies (5.5) on U, then

u(z) >0 forall x € U.
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5.2 The Proof of Theorem [5.1]

We are now ready to prove Theorem [5.1]

Proof. Set p = (n +2)/(n — 2) and we shall first impose a fast decay assumption on the
solution, i.e.,

u(z) = O(|a] =) (5.9)

Define
Yy = {x: (x1,29,...,2,) ER" |27 < )\} and Ty := 0%,

and let 2} be the reflection point of 2 about the plane T}, i.e.,
A
= 02X\ =z, 29, ..., Ty).

Define
uy(z) = u(x®) and wy(z) = ux(z) — u(z).

Step 1: Prepare to move the plane near —oo.
Namely, we will show that we can find N > 0 suitably large so that if A < —N,

wy(z) >0 for all z € X,. (5.10)
Indeed, the mean value theorem implies
—Awy(z) = W} (z) — uP(x) = py? wy(2), (5.11)

where 1, (x) is some number between uy(x) and u(x). In view of Theorem |5.3/ and Corollary
5.2, we take ¢(z) = —pwﬁ_l(x) and see that (5.10]) holds provided we show ¢(z) has sufficient
decay at infinity at the points & where wy(Z) < 0. Well, at these points, we have

ux(Z) < u(x)

and so
0 < ur(F) < a(d) < u(@)

T).
Indeed, by assumption (5.9) and since p = (n +2)/(n — 2),
1. o (n—2)s A .
@) = o((la" )7 ) = o(lal ™)

and the decay of the coefficient is greater than 2 as required in Corollary [5.2], which implies
the desired result. Namely, we can find N > 0 sufficiently large so that for A < —N (or |Z|
sufficiently large), we must have ({5.10j).

Step 2: Moving the Plane.
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We can increase the value of A, and thus move the plane T\ to the right, provided
inequality ((5.10]) holds. Define

Ao :=sup{A|wy(x) >0, forall x € ¥,}.
Clearly, \g < oo due to the asymptotic behavior of u for x; near co. We claim that
wy, =0 in Xy,. (5.12)
Otherwise, the strong maximum principle on unbounded domains would imply that
wy, () >0 for all = € interior(Xy,). (5.13)

Assuming that this holds true, we claim that we can then move the plane T}, further to the
right a small distance, thereby contradicting the definition of Ay and conclude that ({5.12))
holds. Namely, we claim there exists a dp > 0 such that for all § € (0, dy), we have that

Wxgts(x) >0 for all z € Xy 4s. (5.14)

At first glance, one may assume that this would follow from Corollary [5.1, however, we
cannot apply this directly since we are not able to guarantee that w,, is bounded away from
0 on the left boundary of the narrow region. To circumvent this, we apply Corollary
instead but to a carefully chosen auxiliary function. Namely, we set

where
() = ||~ with ¢ € (0,n — 2).

Then, a direct calculation will show that

D¢ A 1
—A’u_))\ IQD'U_})\ — + (—Aw,\—l——w)\)—. (515)
¢ ¢ ¢
Claim: There exists Ry > 0, independent of A, such that if 2° is a minimum point of w,
and wy(2") < 0, then |2°| < R.
To show this claim holds, we proceed by contradiction. Assume that x° is a negative
minimum of w, but that |2°| can be chosen to be suitably large. Thus,

— Ay (2°) <0, (5.16)
and

Dwy(2°) = 0. (5.17)
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By the asymptotic behavior of u at infinity and since |2°] is sufficiently large,

gn—2—q) _ A¢(2?)

c(2?) = —pa ()P > -

|20 o) -
It follows from (5.11f) and wy(xy) < O that
0
0 = —Awy(2°) + c(z?)wy(2%) < —Awy(2°) + A(;(ﬁg)>w,\(x0)

Hence,

< — Awy, + %wg (%) > 0.
Combining this with (5.15) and (5.17)) leads to —Aw,(2°) > 0, which contradicts with (5.16).
This completes the proof of the claim.

Hence, if is violated for any o > 0, then we can find a sequence of positive numbers
{6;} — 0 where for each i, we denote the corresponding negative minimum of wy, s, by x'.
Then, by the last claim, we have |z'| < Ry for ¢ = 1,2, 3,.... Then, by compactness, we can

extract a subsequence, which we still denote by {z'}, that converges to some point 2° € R™.
Hence,
Dw}\()(xo) = lim Dy, (xz) =0,
1— 00

Wy, (27) = lim wy, 15, (") < 0.
From this, we deduce that wy,(z") = 0, since we also know that w,, > 0. Moreover,
Duwy, (2°) = Dy, (2°)p(2°) + Wy, (2°) Dp(2°) = 0. (5.18)

In view of (5.13)) and the fact that wy,(2") = 0, we must have that z° lies on the boundary
of 3),. Then Hopf’s lemma of Theorem [5.2] indicates that

6w)\0 0
e (z”) <0,

which contradicts with (5.18)) and we conclude that wy, = 0 or that u(x) = uy,(x) for all
rEX Xo-
So far, we have shown that u is symmetric and monotone decreasing about the plane

T),. Since the coordinate axis z; can be chosen arbitrarily, we conclude that u must be
radially symmetric and monotone decreasing about some point. Moreover, basic uniqueness

theory for ordinary differential equations imply that u must have the form as described in
the theorem.

Step 3: Removing the fast decay assumption.
Apply the Kelvin transform on the solution u(x) to get v(x):



Then v has the fast decay at infinity and satisfies the following semilinear equation in punc-

tured space,
—Av =v” in R"\{0}.

We can apply the same arguments of Steps 1 and 2, but after some careful modifications.
More precisely, we must carry out the moving plane procedure on ¥,\{z*} to avoid the
possible singularity at the origin introduced by the Kelvin transform. Equivalently, the
function wy(z) = va(z) — v(z) has a possible singularity at (2X,0,...,0). We just have to
show that all the points of interest that arise in applying the earlier arguments actually occur
away from the possible singularity and we can carry out the method as usual.

Just as before, we want to show that wy, = 0 for € ¥, ,\{z**}. Assume the contrary.
In fact, without loss of generality, we can assume that Ay < 0 and wy, Z 0 in Xy, \{z}.
Thus, the maximum principle (see Theorem implies that wy,(z) > 0 for z € ¥y, \{z*}.
Now suppose §; — 0 is a sequence of positive reals such that wy,s,(z) < 0 for some
r € Xy, \{z*}. We need to show that for each i, the negative infimum of wy, s, () is
achieved at some point z¢ € ¥, \{z*°}, and that the sequence of points {z'} is bounded
away from the singularities x2+% of w),s,. Indeed, this is guaranteed by the following two
facts.

(a) There exist € > 0 and § > 0 such that

wy,(z) > € for x € Bs(x™)\{z*}.

(b) There holds
lim inf wy(z)> inf W, (z)>e
A—=Xo z€Bs(z*) /\( ) "~ zeBs(z?0) )\0( ) -
For (a), since wy, > 0 in ¥y, \{z*} and Aw,, < 0, we may compare w,, with a harmonic

function h satisfying
Ah =0 in Bs(z)\{z},
h=¢ on OBs(a™)\{a*},

for suitably small € > 0 and § > 0 such that wy, > € on dBs(x*)\{z*}. Hence, z(1) :=
Wy, () — h(z) satisfies

{ —Az >0 in Bs(a™)\{z},
z>0 on dBs(z*)\{x*},

and the maximum principle implies z > 0 or wy, > € in Bs(z*°)\{z*°}. So any negative
infimum must be attained away from the singularity. Part (b) follows easily from part (a).
Then, following the same ideas found in the first two steps, we can derive a contradiction.
Hence, we then deduce that wy, = 0 on ¥,,\{z*} and so v is radially symmetric and
monotone decreasing about some point z° in R™. If 2° is not the origin, then the origin
is a regular point and u has the fast decay property at infinity to begin with and we are
done. Otherwise, if xo = 0 and thus v is symmetric and monotone about the origin, then
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u is also symmetric and monotone about the origin since it is easy to check that u(z) =
|z|~"=2v(z/|x|?). This completes the proof of the classification result.

Step 4: Liouville property in the subcritical case.
It remains to prove that u = 0 in the subcritical case p € (1, Z—J_rg) Again, by the Kelvin
transform, we have that v, as defined earlier, is now a solution of

—Av = [P D=H2p iy R™ {0}, (5.19)

Since the subecritical condition implies that p(n —2) — (n+2) < 0, the coefficient of equation
decays at infinity. Therefore, we may apply the method of moving planes, i.e., Steps
1-3, to get that v is radially symmetric and monotone decreasing about some point z° € R™.
In fact, it is clear that 2° = 0 due to the singular coefficient of equation (5.19). Thus, it
is easy to see that u is also radially symmetric and monotone decreasing about the origin.
Then, as a consequence of the well-known Pohozaev type identity for equation , u=0.
Alternatively, we can argue, using the translation and dilation invariance of equation ,
that v must actually be constant and therefore trivial. This completes the proof of the
theorem. O

Remark 5.1. In the supercritical case p > (n+2)/(n—2), the coefficient in no longer
decays since the p(n — 2) — (n 4+ 2) > 0. This destroys the mechanism for carrying out the
method of moving planes, since we are not able to get the correct inequality in . The
classification of positive solutions in the supercritical case remains open.

Remark 5.2. We see that the “decay at infinity” principle is important in applying the
method of moving planes to the Lane-Emden equation in R", but we did not make use of
the “narrow region” principle. Indeed, the narrow region principle is more appropriate for
certain bounded domains. Namely, it is a key ingredient in applying the method of moving
planes for radially symmetric, bounded domains. A consequence of this is the following result
whose proof we omit.

Theorem 5.4. Assume that [ is a Lipschitz continuous function such that

1f(p) — f(@)] < Colp — 4

for some positive constant Cy. Then every positive solution u € C*(B(0)) N C(B1(0)) of

{ —Au= f(u) in By(0),
u=>0 on 0B1(0),

15 radially symmetric and monotone decreasing about the origin.
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5.3 The Method of Moving Spheres

In this section, we introduce a variant of the method of moving planes known as the method
of moving spheres. This alternative technique uses the inversion of the Kelvin transform on
spheres and invokes comparison theorems to obtain symmetry and monotonicity properties
of solutions to certain elliptic problems. The advantage of this approach is that we can
deduce the classification and Liouville theorems for non-negative solutions in one fell swoop.
This is, in some sense, more direct than the method of moving planes, which first establishes
the radial symmetry and monotonicity properties then reduces the problem into an ODE
one to arrive at the desired results. The moving sphere approach is also advantageous in
certain domains such as half-spaces.

First, we state and prove two fundamental calculus lemmas that are important ingredients
in the method of moving spheres.

Lemma 5.1. Let f € C*(R"), n > 1 and v > 0. Suppose that for each x € R™, there exists
A = \(z) such that

<|;(_x)x|)yf<x + A(Wﬁ) = [(y), y e R"\{z}. (5.20)

Then for some a >0, d > 0, and zy € R",
a v/2
()
f(z) <d+ |z — xo\z)
Proof. From ([5.20)), we have that

C:= lm [y"f(y) = Az)"f(z), ze€R"
ly|—o0
If £ =0, then f = 0 and we are done. However, if £ # 0, then f does not change sign.

Therefore, without loss of generality, we may take ¢ = 1 and f positive. For large y, taking
Taylor expansions of the left-hand side of ((5.20) at 0 and z yield

1) = () (£0) + FE 007 U+ ol ™) (5.21)
and
1) = (20 (£ + GNP A2 ofll ), (5.22)

where o(|y|~!) represents some higher-order term such that o(|y|™)/|y|™' — 0 as |y| — oc.
From our assumption that ¢ = 1, we combine (5.20]), which implies A\(z) = f(z)~"/*, with

(5-21)) and (5.22)) to get
12 OF 120 OF

F@) S @) = F0)7 S 0) - v

(3 7
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Integrating this yields that for some zo € RY, d > 0,
f@)™" = |z — o> + d.
Solving for f(z) will finish the proof. O

Lemma 5.2. Let f € C'(R™), n > 1, and v > 0. Suppose that

)\ v Yy—x .
<!y—x!> f(a:+>\|y_x|2) <fy), foral A\>0,2 R Jy—z| > A (5.23)

Then f = constant.
Proof. For x € R", A > 0, define

z

9o (2) = flz + 2) — (%)f(x + >\2—), 12| > A

|22

Indeed, g,./(2) = 0 and g, .(rz) > 0 for > 1. Then, it follows that

d
7 Yax,|z Z 0.
d?"g ! |(T2)’r:1
Hence, a direct calculation yields
2Df(z+x)-z+vf(z+x) > 0.

Since z and x are chosen arbitrarily, a change of variables shows that

2Df(y) - (y —z) +vf(y) > 0.

Multiplying the preceding inequality by |z|™' and sending |z| — oo, we conclude that
Df(y)-0 <0 forally € R" and § € S""!. Hence, Df = 0 in R", and this completes the
proof. O

We give an alternative proof of Theorem using the method of moving spheres. We
interrupt momentarily for some notation. For z € R” and A > 0, define the Kelvin transfor-
mation of u by

weal) = (257) (o 0 ) v R,

The following lemma ensures that we may start the moving sphere procedure.

Lemma 5.3. For every x € R", there exists A(x) > 0 such that u, \)(y) < u(y).

From this we may define the following value Ay € (0, 00|. For each x € R" we set

No(x) = sup{j > 0] upa(y) < uly), forall [y—a| = A, A€ (0,4}
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Proof of Theorem[5.1. We consider the two cases separately.
Critical case: Let p = (n + 2)/(n — 2) and suppose that u is a positive solution of (/5.1]).

Step 1: We claim that if Ao(z) < oo for some point = € R™, then
Ug ro(z) = w in R™\{0}.
Without loss of generality, we may take x = 0 and Ao = Ao(0), uy = up_, and
Uy ={y e R"[[y| > A}.

From the definition of Aq,
U > Uy, on My,.

Recall that the Kelvin transform of u satisfies

n+2

—Auy = u;ﬁ, A> 0.
So by setting wy = u — uy, we get
n+2

n+2 —L=
_ n_o n—2 :
—Awy, =ur2 —uy” >0 in 3Ny,

If wy, = 0 in X,,, then we are done. Otherwise, Hopf’s lemma and the compactness of

0B),(0) imply that
d

dr ""laB,,(0)

By the continuity of Du, there exists R > A such that

>c> 0.

d
R >¢/2>0, for A €[\, R], r € [\, R].
Thus, since wy = 0 on dB,(0), we have
wx(y) >0 for X € [N, R], ly| € (\, R]. (5.24)

Setting m = mingp, o) wy, > 0 and since —Aw,, > 0 in X,

n—2

R
W, (y) = WW, for y[ > R.

Hence,
Rn—2
wi(y) > mW — (ua(y) — ux (y)), for |y| > R. (5.25)

By the uniform continuity of u on Bg(0), there exists ¢ € (0, R — \g) such that for \ €

()\0, )\0 + 6),
R
A”—%(A?i) _ A”—Qu(vi)‘ < mi
ly[? 0 Oly[? 2
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From this and ([5.25)), we get

wx(y) >0 for A € [N, Ao +¢€], |y| > R. (5.26)

However, estimates (5.24]) and (5.26)) contradict the definition of Ay. This proves the claim.
Step 2: We claim that if A\g(z¢) = oo for some 2y € R", then \o(z) = oo for all z € R™.
Observe that, by definition,

Uz a(y) < uly), forall A >0, |y —xo| > A

Thus,

lim [y]*"u(y) = oc.
[y|—o0

Assume that \g(x) = oo for some € R™. Then by Step 1,

lim |y|"_2u(y) = lim |y|”_2ux7)\0(x) (y) = /\O(x)"_Qu(x) < 00,

ly|—o00 ly|—o0

and we arrive at a contradiction.
Step 3: We claim A\o(z) < oo for all x € R™.

To see this, note that if \g(zg) = oo for some point 2o € R"™, then Step 2 ensures
Ao(z) = oo for all x € R™. Lemma [5.2] then implies that u = constant. Since u is assumed
to be positive and we have shown it is necessarily constant, we arrive at a contradiction.

Step 4: We are now ready to complete the proof of the theorem in the critical case. From
the previous steps, for each € R" it follows that Ag(x) < 0o and ug @) = v in R"\{z}.
From Lemma [5.1] there are a,d > 0 and some o € R" such that

n—2

a n-2
) Q,xGR”.

d+ ‘33—5130‘2

u(z) = (

This proves the result in the critical case.

Subcritical case: Let p < (n+2)/(n—2) and suppose u is a non-negative solution of ([5.1)).
The proof in this case is similar to the critical case. Namely, due to the Kelvin transform,
we can show that Ag(zp) = oo for some zy € R™. As before, this implies that A\o(z) = oo
for each x € R™. Then, by Lemma [5.2] © = constant and so v = 0. This completes the
proof. O
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CHAPTER 6

Concentration and Non-compactness of Critical Sobolev Embeddings

6.1 Introduction
In this chapter, we explore the breakdown of the compactness of the injection
W(U) — LY(U)

where 1/q = 1/p—1/n (see the appendix |A| for the statements and proofs of the Sobolev in-
equalities and embeddings). A closely related and important issue is when weak compactness
fails to imply strong compactness. We have already encountered problems from the calculus
of variations in which we recover the strong compactness of a minimizing sequence from its
weak compactness by exploiting the coercivity and the weak lower semi-continuity of the
functional undergoing minimization. Here we focus on the case when this compactness issue
arises from a concentration phenomena due to an inherent scaling invariance in the problem.
The approach we introduce to regain strong convergence (concentration compactness) is to
show that concentration only occurs in a small or negligible set. We follow the notes of L.
C. Evans [§], but we also refer the reader to P. L. Lions [22] 23]

To illustrate the key points, let us discuss the possibility that a sequence f;, — f weakly in
L1(U) fails to converge strongly in L(U). In addition to assuming weak convergence, let us
also assume pointwise convergence almost everywhere, f, — f a.e. in U. This ensures that
no wild oscillations may occur, which itself is another potential culprit responsible for the
failure of strong convergence. Even this additional assumption, however, does not guarantee
strong convergence due to a possible concentration of mass onto a negligible set. Namely, the
obstruction is that the mass | fr, — f|? may somehow coalesce onto a set with Lebesgue measure
zero. It is this concentration of mass onto a negligible or small set that allows us to overcome
the breakdown of strong convergence in certain problems; for example, when proving the
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existence of extremal functions to sharp geometric inequalities (e.g., isoperimetric, Sobolev
and Hardy-Littlewood-Sobolev inequalities).

The model example we focus on is the problem of proving the existence of extremal
functions to a sharp Sobolev inequality; namely, the embedding W!'?(R") < L?(R"), where
n>p=2and qg=2*:=2n/(n—2). In particular, we first give a simple characterization
of the non-compactness of the Sobolev embedding in terms of concentration. Then, we
use this characterization and the concentration compactness principle to recover the strong
compactness of minimizing sequences via translations and dilations to obtain an extremal
function to the sharp Sobolev inequality. Prior to stating our main results, we review some
terminology and basic theorems but we omit their proofs.

Theorem 6.1. Let U C R™ be a bounded open subset, 1 < q < oo, and assume f, — f in
LY(U). Then

(a) {fr}2, is bounded in LI(U) and

(b) || fllzaw) < liminfy oo || fell Lo

(¢) Refinement of Part (b): If 1 <q < oo, fr = fin LYU) and || f|| La@) = Umi—oo || il La(uy,
then
fx — [ strongly in LI(U).

Recall the following special case of the Banach-Alaoglu theorem.

Theorem 6.2. Assume 1 < q < co. If the sequence { fr}32, is bounded in LI(U), then it is
weakly precompact in LY(U). That is, there exists a subsequence {fy,}32, C {fr}32, and a
function f € LY(U) such that f, — f in L1(U).

Remark 6.1. The previous result holds in the case ¢ = oo but the convergence of the
subsequence in L>(U) is understood in the weak star sense, since U C R" is o-finite and
L>(U) is isometrically isomorphic to the dual space L'(U)*. Namely, we treat sequences in
L>(U) as sequences of bounded linear functionals on L'(U). The weak compactness in the
case q = 1 1s obviously false. To circumvent this issue, the Riesz Representation Theorem
indicates that it is natural to consider L*(U) as a subset of M(U), the space of signed finite
Radon measures on U.

Definition 6.1. A sequence {u}p>, C M(U) converges weakly to u € M(U), written
as

p = pin M(U),
provided that
/gduk—>/gdu as k — oo
U U

for each g € C.(U).
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Theorem 6.3. Assume p — p weakly in M(U). Then

lim sup py,(K) < p(K)

k—o0 o

for each compact set K C U, and

p(V) < liminf (V)

k—oo

for each open set’ V C U.

Theorem 6.4 (Weak Compactness for Measures). Assume the sequence {puy}32, is bounded
in M(U). Then there exists a subsequence {jy;}32, and a measure p in M(U) such that
e, — pin M(U).

Remark 6.2. We extend the terminology above to the Sobolev space WH4(U), 1 < q < oo,
by saying that fr, — f weakly in WH4(U) whenever f, — f in LY(U) and Df, — Df in
LY(U;R™).

Theorem 6.5 (Compactness for Measures). Assume the sequence {uy}p, is bounded in
M(U). Then {u.}32, is precompact in W=14(U) for each 1 < g < 1*.

We will need the following refinement of Fatou’s lemma (see Lemma |[A.1)) due to Brezis
and Lieb.

Theorem 6.6 (Refined Fatou). Let 1 < ¢ < oo and assume frp — [ weakly in LY(U) and
fi — f a.e. inU. Then

tim (W fellfay = e = Fay) = 1Ay

To better understand how weak convergence in L(U) fails to imply strong convergence
in L4(U), we assume
Jo = [ in LYU), (6.1)

and consider the measures
Gk = |fk—f|q for k = 1,2,3,....

Thus, each Radon-Nikodym derivative 6, (E) = [, |fx — f|?dz controls how close fy is to f
in the L9%-norm restricted to the Borel set £ C U. Now for each Borel set £ C U, we call

0(F) = limsup/ |fx — f|9dx
k— o0 E

the reduced defect measure associated with the weak convergence (6.1)) (in addition, we
can show that € is a finitely-additive outer measure). Then, we may characterize strong
convergence in terms of this reduced defect measure.
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Proposition 6.1. Let 1 < g < oo, E, F C U are Borel sets and suppose fr, — f in LU(U).
Then

(a) p((E\F)U (F\E)) = 0 implies 0(E) = 0(F'), where u is the n-dimensional Lebesgue

measure; and

(b) f — [ strongly in LY(E) if and only if 6(F) = 0.

Therefore, we see the failure of strong convergence occurs if and only if §(U) > 0. As
already alluded to earlier, our hope in this situation is for concentration to occur, i.e., € is
only non-trivial in a small or thin subset. Measuring smallness or thinness of sets can be
delicate and we shall do so via p-capacities and Hausdorff measures. We define these now
but the notion of p-capacity was already discussed when introducing the Wiener criterion

and the Perron method (see (2.25)) in Chapter [2)).

Definition 6.2. If s € [0,00), § € (0,00], we define the s-dimensional Hausdorff pre-
measure HZ(A) by

7Ts/2

HﬂA):nﬁ{EZIK%+1)

(dz’m;l o ) s

Ac G Cs, diam C; < 5},
j=1

for each subset A C R™. Then the s-dimensional Hausdorff measure H® is given by

H*(A) := lim Hj(A) =sup H;(A) for each A C R".
6—0 5>0
If 1 < p < n, we define the p-capacity Cap, by
Capy(A) = inf{ \DfJ? da ‘ fe LV (RY), Df € LP(RY), A C interior{f > 1}}
Rn

for each A C R™.

Definition 6.3. We say 0 is concentrated on a set of p-capacity zero if there exist
open sets {V;}2, in U such that

O(U\V;) =0 fori=1,2,3,..., and Cap,(V;) — 0.

We say 6 is concentrated on a set of Hausdorff H*-measure zero if there exist open
sets {V;}32, in U and a sequence {0;}5°, in (0,00) such that

O(U\V;) =0 fori=1,2,3,...,6; — 0, and Hj (V;) — 0.
Roughly speaking, the last two definitions describe when 6 concentrates on the set V' =

Moz, Vi with either Cap,(V) =0 or H5(V) = 0. As 0 is only finitely subadditive, we cannot
generally deduce from this that 6(U\V) = 6(V¢) = 0. For example, let U = (0,1), f =0

and el 1 1,1
0, otherwise.

Then 6 is concentrated on V' = {1/2}, §(E°) = 0 for each open set E containing V' but
g(Ve) =1
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6.2 Concentration and Sobolev Inequalities

Let Cy be the best constant in the Gagliardo-Nirenberg-Sobolev inequality in this case (see
in the appendix [A]). There holds the following.

Theorem 6.7. Assume that n > 3,
fe — f strongly in L (R™), Df, — Df in L*(R™;R").
Suppose further that
IDfi]? = pin M(R™), |fi]* —= v in M(R").

(a) Then there exists an at most countable index set J, distinct points {z;};e; C R", and
non-negative weights {y;,v;}jes such that

v= "+ vide,, w2 [DIP+D s, (6.2)
jed jeJ
(b) Furthermore,
v <C3E (e (6.3)

(¢c) If f =0 and
V(Rn>1/2* > CQ/,L(R”)I/27

then v is concentrated at a single point.

Proof. Step 1: Assume first that f = 0. Choosing ¢ € C>°(R"), from (A.11]) we deduce
that

1
9%

(L Jentan)” < ([ Dlef)dr)

Since f; — f = 0 strongly in L2 (R"), we obtain

loc

(/Rn |ol* d’/>21* < Cz(/Rn ’g&’Qd/L)é. (6.4)

So by approximation, we have
v(E)Y? < Con(B)"? (6.5)
where ¥ C R" is any Borel set. Now since y is a finite measure, the set

D :={z e R"|p({z}) > 0}
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is at most countable. Thus, we can write D = {z;};cs, 1; == p({z;}) (j € J) so that
jeJ

From (6.5) and the theory of symmetric derivatives of Radon measures (see Federer), we
conclude that ¥ < p and so for each Borel set F,

v(E) = /ED#V du (6.6)
where
o V(Br(2))
D,v(x) := 7101_1}(1) B0 (6.7)
But implies
v(B,()) 2 )2/ (=2)
R < CF (B @), (63

provided that u(B,(x)) # 0. Thus, we infer
D,ywv=0 p—ae on R"\D. (6.9)

Now define v; := D,v(z;)pj. Then (6.6)-(6.9) imply parts (a) and (b) of the theorem
(for f =0).

Step 2: Next, assume the hypotheses of assertion (c) in the theorem. Then (6.5)) gives
V(]Rn)l/Q* — Cg,u(Rn)l/2.

Since (6.4) ensures that

( 1%
R’ﬂ

we deduce that v = CZ" u(R™)% (=2 1. Consequently, (6.4) reads

1

L 1
o du>2 < C2M<Rn)%< |(,0’2 dlu>27
Rn

1 1
([ 1ol an)™ <@ ([ JePav)’,
Rn R"
and so v(E)Y? v(R")Y/" < v(E)Y? for each Borel set E. This cannot happen if v is concen-
trated at more than one point.

Step 3: Now assume f #Z 0 and write g := fr — f. The calculations in the Steps 1 and 2
apply to {gx}72, as well. Moreover, there holds

|Dgi|*> = |Dfi|> —2Dfr - Df + |Df|* = p— |Df|* in M(R™),

and Theorem [6.6| implies |gr|>” — v — |f|*" in M(R"). This completes the proof. and
[l
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6.3 Minimizers for Critical Sobolev Inequalities
Let n > 3 and consider the problem of minimizing the functional
Iw] :/ | Dw|? d, (6.10)
over the admissible set
M :={w € L* (R") | ||w| 2* @ny = 1, Dw € L*(R™;R"™)}.

Notice carefully that
I := inf I[w] = C;2.

weM
Our goal is to show that this infimum is indeed obtained by a suitable minimizer. On
a related note, we may also consider the same minimization problem but on an arbitrary
domain U with functional

IU[w]:/\Dw|2d:c
U

undergoing minimization over
My = {w € L¥ (U)| ]l @y = 1, Dw € L*(U; R™)}.

Interestingly enough, the infimum here is also given by the best constant in the Gagliardo-
Nirenberg-Sobolev inequality, i.e.,
in Iyfw] =1=C5?
in Iylw] 2
but the minimum is not achieved for U # R™ (see Theorem below for a proof). In other

words, the best constant in the sharp Sobolev inequality does not depend on the domain
and the culprit responsible for this is the scaling invariance

u(x) = ug(z) == RY* u(Rz) = R"??u(Rz), R >0, (6.11)

with respect to the norms in the Sobolev inequality. For instance, fix u € H}(B;(0)) satisfy-
ing |[urllze* Bro) = lullz2* 8,0y = 1, but then up — 0 in D'*(R") as R — oo. Therefore,
relative strong compactness of minimizing sequences is not expected to hold. What ulti-
mately saves us is the actions of rescaling and translations, which can recover the relative
compactness of minimizing sequences.

Remark 6.3. (a) Recall that the method of moving planes indicates that the critical points
of the functional I, which includes its minimizers, are essentially unique. Namely, all
critical points must admit the form

o) = ) (o) (6.12)

e2 + |z — xo|?

for some € > 0 and some point xq € R™.
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(b) The classification of critical points in (a) also illustrates the concentration property which
occurs in the critical Sobolev inequality. Indeed, upon normalizing, there holds

Cllte woll ey = l|te,zo | 27 (mry = 1
so that the sequence {Uuz 4, }e>0 is bounded in these norms. However, as e — 0, we have

that
{ Ue 2 (x) — 0 for x # xy,

Ue g () = 1/MD/2 — 00 for x = .

Now we choose a minimizing sequence {uy}7°, C M with

We may assume Duy, — Du in L*(R™;R") and u; — w in L?" (R"). Recall from Chapter 2
that
< Tim _ .
Iu] < h/?—l> g)lf Iuy] JQJE Iw]

Hence, u is a minimizer as long as © € M. Now, since we have
[l 2* @ny < 1, (6.14)

what is only left to verify is if |lu|2gn) = 1. Once we verify this, we are done. Before
we state and prove the main result, for v € M, y € R” and s > 0, we define the rescaled

function
l’ —_—

v () = 5*%2@<

y) (z € RY).

S

Theorem 6.8. Let {uy}72, C M satisfy (6.13)). Then there exist translations {yx}7>, C R™
and dilations {sy}32, C (0,00) such that the rescaled family {u}***}32, C M is strongly
precompact in L* (R™). In particular there exists a minimizer u € M of the functional I.

Sketch of Proof. We outline the proof in five main steps.
Step 1: Define the Lévy concentration functions

Qx(t) := sup / lup|* dr (t>0,k=1,2,3,...).
Bt (y)

yeRn
Then QV°(t) = Q¥ (t/s) where Q¥ is the concentration function of u!*. The fact that
lim Qu(t) = 1
ensures we can choose dilations {sj}72; such that
QY*(1)=1/2 forally e R", k=1,2,3,....

232



Then this allows us to select translations {yx}72, so that the measures, vy** = |uf** ¥

(k=1,2,3...), are tight in M(R").

Step 2: To simplify notation, we assume the dilations and translations of step one were
unnecessary and so Qx(1) =1/2 (k =1,2,3,...) and the measures {v;}7, are tight. Thus,
passing to a subsequence, if necessary, we may assume

v, = v in M(R"), v@R")=1. (6.15)

We may also assume that
pr — 1 in M(R") (6.16)
for py := |Dugl? (k=1,2,3,...).

Step 3: We claim that u # 0.

Assume the contrary. By noting that p(R") — I, u(R") < I = C,?, and (6.15), we
use part (c¢) of Theorem to get that v is concentrated at a single point o € R". From
this we deduce the contradiction

1

2 Bi(x0)

Step 4: We claim that u € M.
Assume otherwise, i.e., assume that ||u

QL’;*(Rn) =X € (0,1). Setting

M)\ = {'LU E LQ*(RTL> | HwHLQ*(Rn) = >\7 Dw E LQ(RW«’R”)}’

we write
I = inf Tw).

we M),
Then I, = A%
Step 5: According to (a) and (b) of Theorem [6.7}, we have
D S SN RS Sy
jeJ jeJ

for some countable set of points {x;},c; and positive weights {y;, v;},e,, satisfying

2/2% /.

)\—1—21/]-:1, 1 EVj/ I(j5€l).
jeJ

Hence, we arrive at the contradiction

I > p(R") 2/ [Duf* dz +
R"

jeJ
j€J jeJ
> 1,
and this completes the proof. O
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Remark 6.4. Roughly speaking, Steps 3 to 5 in the proof show that vanishing and dichotomy
in the principle of concentration compactness do not occur and therefore, compactness must
hold (see Proposition . Step 5, in particular, shows that if a portion of the mass con-
centrates, our minimization problem splits into two parts, the sum of whose energies strictly
exceeds the energy were splitting not to occur.

6.4 A Sharp Sobolev Inequality

We are now in a position to combine our previous results to give a complete proof of the
sharp Sobolev inequality

C*_1||u||iQ*(U) < HDu||2L2(U) for every u € Hy(U), (6.17)

where n > 3 is an integer, 2* = 2n/(n — 2) is the critical Sobolev exponent, U is an open
domain, i.e., an open connected subset of R", and the sharp constant C, = C,(n) only
depends on the dimension n and is explicitly given by

1 nn-2) S/ — n(n — 2) ( 2m(nt1)/2 )2/n
C. 4 4 L((n+1)/2)

=n(n— 2)7T<F1£7(17/L)2))2/n’ (6.18)

where I'(+) is the gamma function defined by

['(z) = / t" e tdt for x > 0. (6.19)
0

First, let us remark why the identities in (6.18]) hold. Recall

27.(_(n+1)/2

|Sn| = Wnt1 =

and thus to verify the last equality in (6.18)), it suffices to show

2r(nt)/2 - nyel(n/2)
I'((n+1)/2) = (4m) L(n)

Indeed, this is equivalent to

2" 'T(n/2)0((n +1)/2) = 7'/*I(n),
which in turn is equivalent to

D(n/2)T((n +1)/2) = 2172 (n).
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Now the last equality follows by setting = n/2 in the following gamma function identity

20+ 1
2

r(g;)r( ) — 91=2071/2D (24, for any x> 0. (6.20)

We mention another useful identity which we will use in computing the best constant in

(6.18). Namely, we have

L)l (y)

By =301y

for z,y € (0, 00), (6.21)

where B(z,y) : (0,00) x (0,00) — R is the beta function defined by

1
B(z,y) = / N1 =)
0

As in the previous section, set

Iylw] = / | Dw|?* du,
U
but here we denote
S(WU) = inf{Iy(w) |w € Hy(U), |w|j2w) = 1}

and I = S(R™).

Notice that the sharp constant depends only on the spatial dimension rather than the
domain itself. This further suggests that S(U) should be independent of U and therefore
remains constant over all domains. In other words, S(U) is not attained for proper domains.
We prove this in the next proposition, but we already know this to be true in the case of
bounded star-shaped domains by the Rellich-Pohozaev identity (see Proposition . The
next proposition is more general as it precisely states that the minimum is never attained
on any domain unless U = R". The key to proving this exploits the rigidity (scaling and
translation invariance) of Sobolev inequalities in the whole space as discussed in ([6.11). We
then prove that if U = R", the best constant is attained and the minimizer, as a result of
the method of moving planes, is uniquely given by standard bubble functions.

Proposition 6.2. Let U C R" be an open somain.

(a) The best constant in the Sobolev embedding HY(U) — L* (U) is independent of U; that
is, S(Uy) = S(Us) for any open sets Uy and Uy in R™.

(b) If U is a proper domain of R™, then S(U) is never attained.
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Proof. Part (a). Suppose U; and U, are any open sets in R". Since S(U) = S(zo + U)
for any zy € R", we may assume that 0 belongs to U; N Us. Denote the rescaled function
w?(x) = w(Rx). Choose ¢ > 0 and a non-trivial u; € H}(U,) such that Iy, (u1) < S(Uy) +¢.
Define the extension function

i (z) = wy(z), if z € Uy,
700, if v ¢ Uy,

so that @, belongs to Hg(R™) and supp(uf) C U, provided R > 0 is large enough.
Now let us be the restriction of ﬂ{% to Us so that us is non-trivial and belongs to H&(Ug),
and
S(Uy) < Iy, (ug) = Ign (al) = Inn (@) = Iy, (uy) < S(Uy) +&.

We conclude that S(Uy) < S(U;). Similarly, exchanging the role of U; and Uy and running
the same argument as above, we also deduce that S(U;) < S(Us). Therefore, S(Uy) = S(Us).

Part (b). Now suppose U # R" and assume that v € H}(U) is a non-negative minimizer
of the functional Iy(w) and thus Iy (u) = S(U). Now set v = u in U and v = 0 in U°. Then
S(U) = S(R™) and v is a non-negative minimizer for S(R™). Thus, recall that v must be a
positive classical solution of

Av + co™HD/(=2) p R

for some constant ¢ > 0. But this contradicts that v vanishes outside U. O

Theorem 6.9 (Sharp Sobolev). Let U be an open set in R™. For allu € H}(U), there holds
the inequality

n—2

_2 2n n
n(n )lSnlz/n</ |z d:v) §/|Du|2d:)s. (6.22)
4 U v

If U = R", then equality holds in the estimate if and only if u(x) is a non-zero constant
multiple of

n—2

Pe o (T) = (;> N (6.23)

e2 + |x — xo|?

for some € > 0 and some point xy in R™.

Proof. By the Gagliardo-Nirenberg-Sobolev inequality and a basic density argument,
there exists a positive constant C; !, depending only on n, for which the inequality
holds in H¢(U). By Proposition [6.2] it is enough to assume U = R". Therefore, it remains
to show that the best possible constant is given in (6.18]) and the infimum in the associated

variational problem is achieved by standard bubbles of the form ((6.23)).

Step 1 (Existence and classification of minimizers).
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Theorem [6.§ ensures the existence of a non-trivial minimizer u to the variational problem
I = S(R™). Further, recall that u is a non-trivial minimizer if and only if it is proportional
to any classical entire solution of the critical Lane-Emden equation

Au + uiz =0,u >0, in R™.
But Theorem ensures every classical solution of this equation has the form (/6.23)).

Step 2 (Choosing a minimizer).

In this step, we choose the minimizer that we will use to compute the sharp constant.
By invariance, we may choose zo = 0 and € = 1 in ¢, ,,(x) and so we take the minimizer to
be the function

u(z) = c(#)%?, (6.24)

L+ [af?

where ¢ is chosen so that [|u]| 2+ gn) = 1, i.e., we want ¢*/("=2 . A =1 where

A= / [(1 +1|x|2>(n2)/2] e /Rn (1 +1|a;|2>n dr
/ / " ds dt = /OO ISP (1 4 #2) " dt
OBy ( 0

- 2 tdt 1 dr tdt
= |S" :<set7’:—,——:—>
(1+82)n2 (14 ¢2)2 1+¢27 2 (1+1¢2)2

S" 1|/ a7 (1 =) tdr = < ]S”’1|B(n/2,n/2)
_ Ligny [(n/2)I'(n/2) :} QW"/Q L(n/2)0(n/2) _ npl(n/2)
2 I'(n) 2T (n/2) I'(n) I'(n)

Hence,

c= (W%Zi/z)) ks (6.25)

Step 3 (Compute the best constant).

If u is defined by (6.24) and (6.25]), then an elementary but tedious calculation yields the
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best constant

Cl= =Iga(u) = |Du|2dx:c2(n—2)2/ (

Rn 1+ |z|?

0 t2
2 2 —1 —1
= —2)%Is” t" dt

B”W/ﬁ tdt '_@“T_ 1 dr tdt
1+ﬁ “2(1+12)2 12T 2 (14 12)2
_ 9)\2
(=2 - 1|/ 3201 -t dr = 2022 22) s B(5 - 15 +1)

_ 2<n 2 g1y LG~ DTG + 1)
I'(n)
_( F( ) 2(n—2)2 2772 T(2 - 1I(% +1)
a 2 T(n/2) I'(n)
IWUQYMH%—UH%+D
['(n/2)T'(n/2)

— D(n/2)I'(n/2)
(5 —1)I(n/2)
-2 - oD
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CHAPTER [/

Other Related Problems Arising from Analysis and Geometry

This chapter surveys several fundamental mathematical problems in which elliptic PDEs play
a prominent role in their solution. We shall briefly introduce and motivate each problem.
We then give proofs of the corresponding results making sure to elucidate the essential ideas
in the proofs while highlighting where the elliptic theory we have learned come into play.

7.1 Riemann Mapping and Uniformization Theorems

We start this chapter with one of the most remarkable and profound mathematical results
of the 19th century, the Riemann Mapping theorem. This classical result asserts all “nice
domains without holes”, more precisely the open and simply connected proper subsets of
the complex plane C, are conformal to one another. The earliest statement of this result
dates back to Riemann in his 1851 dissertation albeit with additional restrictions, e.g., he
imposed sufficient regularity on the boundary of the domain. Riemann, however, offered an
“incorrect” proof and although Koebe later received recognition for his subsequent proof of
the result, the first complete proof was given earlier by W. Osgood in 1900 [25].

In keeping with our theme on elliptic PDEs, we present a proof of the Riemann mapping
theorem in the spirit of Riemann’s original ideas. Namely, Riemann’s approach aimed to
construct a conformal mapping from any simply connected domain onto the unit disk. This
effectively reduces the problem to solving an elliptic boundary value problem. At the time,
Riemann and his contemporaries lacked the modern analytical tools to properly tackle such
a problem. That is, he attempted to solve the problem through variational arguments via
Dirichlet’s principle. However, the validity of this principle, in particular, on successfully
minimizing the Dirichlet energy integral [, [Dul? dz over an appropriate class of functions
was not yet settled, and his approach proved controversial among experts at that time.
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Thanks to basic elliptic PDE theory, properly carrying out Riemann’s original idea is
now fairly routine. Rather than use Dirichlet’s principle, however, we utilize the Perron
method for solving the boundary value problem, since it is more effective in dealing with the
boundary of an arbitrary simply connected domain.

Remark 7.1. Riemann’s original approach contrasts with the typical arguments that makes
use of the theorems of Montel and Hurwitz, which nowadays has become the norm in many
complex analysis textbooks. The reader is referred to the textbook [11], which provides a proof
from both perspectives. In fact, our presentation is inspired by discussions from that textbook
as well as the paper [15].

Theorem 7.1 (Riemann Mapping). If U is a simply connected domain in C, and U # C,
then U is confomally equivalent to the open unit disk D = {z € C : |z| < 1}.

For the reader’s convenience, some background definitions are in order. Let U, U; and U,
be domains in the complex plane. We say a path « : [a,b] — U in U is closed if y(a) = v(b),
and we say it is simple if y(#;) # 7(t2) for all t; # t5 in (a,b). Then U is said to be simply
connected if each simple closed path in U can be deformed or contracted to a single point.
For instance, any star-shaped domain, such as an open ball, is simply connected. Moreover,
we say U; and U, are conformally equivalent if there is a conformal mapping f : Uy — U,
of one domain onto the other.

Recall a smooth complex-valued function f(z) is conformal at zy if whenever v and
are two curves terminating at z, with non-zero tangents, then the curves f oy and f oy
have non-zero tangents at f(zy) and the angle from (f o~y)'(20) to (f o 71)'(20) is the same
as the angle from ~{(z0) to v;(z0). Note, if f(z) analytic at a point zy and f'(zo) # 0, then
f(z) is conformal at z;. Moreover, a conformal mapping of one domain U; onto another Uy
is a continuously differentiable function that is conformal at each point of U; and that maps
U; one-to-one onto Us.

We say a subset E of C is a continuum if it is compact and connected and contains more
than one point. For a continuum F, then its complement E¢ = @\E is simply connected.
Conversely, if F is compact and E° is simply connected, and if F contains more than one
point, then F is a continuum.

Theorem easily generalizes to the uniformization theorem, which classifies all simply
connected domains (more generally, Riemann surfaces) into three basic models. To state
this classification result, we first define the extended complex plane C = CU {400}, which is
the one-point compactification of the complex plane, sometimes referred to as the Riemann
sphere. To motivate why we refer to it as a sphere, we recall the stereographic projection
from the unit n-sphere S* C R™™! onto the Euclidean space R™. More precisely, we let

Rr = R"U{+0oc} denote the one-point compactification of R, and we define (s1, $2, ..., Sp+1)
by
5; = TP for i =1,2,...,n, and s, = FuPE (x € R"). (7.1)

240



If v = +o0, weset s, =0fori=1,2,...,n and s,,; = —1. Thus, we are identifying the
“north pole” and “south pole” of the unit sphere with the origin = 0 and +o0, respectively.
Moreover, it is easy to show Z?;l s? =1. Thus, S : z — s is a mapping from R™ onto S™.
The inverse of this mapping (this inverse map, in particular, is what we typically call the
stereographic projection of the unit n-sphere onto a plane) is given by

N 1+ Sn+1

Remark 7.2. If one situates the n-sphere to lie on the hyperplane R™ with its south pole

for i=1,2,...,n. (7.2)

X

touching the origin of the hyperplane, we may visualize the stereographic projection as the
one-to-one correspondence between the points on the sphere and the hyperplane connected by
the line emanating from the north pole.

Evidently, the map S is a conformal mapping and thus so is its inverse. And, in the
case of the extended complex plane, we may take n = 2 in the mapping S : R2~C —» §2
to “lift” the extended complex plane onto the 2-sphere. Thus, we may view the extended
complex plane as a sphere, i.e., we call C the Riemann sphere.

The assumption U # C in Theorem is necessary. According to the Liouville theorem
for harmonic functions, the only bounded harmonic functions in the entire (complex) plane
are constant maps. Therefore C cannot be mapped conformally onto any bounded domain.
In the context of simply connected domains on the Riemann sphere, if such a domain U is
not the Riemann sphere, we can always translate a point in the complement of U to +oo
via a fractional linear transformation then apply Theorem [7.1] Therefore, U must either be
conformal to the unit disk or the complex plane. Namely, we deduce a simplified version of
the uniformization theorem: any simply connected domain can be classified into the three
standard models: the open unit disk, the complex plane, or the Riemann sphere.

Corollary 7.1. A simply connected domain in the Riemann sphere is either the Riemann
sphere itself, or it is conformally equivalent to the complex plane, or it is conformally equiv-
alent to the open unit disk.

Proof of Theorem [7.1. Suppose U is a simply connected domain and U® = C\U has a least
two points. Clearly, we assume U # . And recall that we can use the logarithm function
composed with a fractional linear transformation to map U conformally onto a bounded
domain. More precisely, if (o, (; € OU, we may set f(z) to be an analytic branch of log((z —
C)/(z— 1)) in U. If wy = f(2p) for some zy € U, then the image f(U) is contained in some
ball Br(wg) and f(z) cannot assume any of the values in the set Br(wg)+ 27i for any z € U.
So we deduce that 1/(f(z) —wy — 2mi) maps U conformally onto some bounded domain. So
without loss of generality, we may assume U is bounded. We may also assume 0 € U by
translation.

For such a domain, we seek a function u(z) : U — C solving the Dirichlet problem for
Laplace’s equation,

(7.3)

Au(z) =0 for z € U,
u=log|¢| for ¢ € IU.
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The existence of a unique harmonic function u(z) satisfying follows from the Perron
method, provided each point on the boundary OU is a regular point (see Chapter 2 Remark
and Theorem . This is indeed the case for simply connected bounded domains as
the following lemma indicates, which we state without proof.

Lemma 7.1. Let ¢ € OU. If ( lies on a continuum in C\U, then every point of the boundary
U s regular. Consequently, if C\U consists of finitely-many continua, then every point of
the boundary OU is reqular.

Now, for this harmonic function u(z) solving (7.3)), the Cauchy-Riemann equations yield
its harmonic conjugate v(z) in U. We then define the mapping

©(2) = ze”WHTE) for » e UL (7.4)

Obviously, ¢(z) is non-constant and analytic in U and |p(¢)| = 1 on the boundary OU. The
strong maximum principle ensures that |p(z)| < 1 in U. This verifies ¢ maps U into the
open unit disk. So, it only remains to show this mapping is onto and therefore a conformal
mapping. The final step will make use of the so-called Argument Principle.

Lemma 7.2 (Argument Principle). Let D be a bounded domain of the complex plane with
piecewise smooth boundary 0D, and suppose g(z) is a meromorphic function on D (i.e., g(z)
is analytic on D except possibly at isolated singularities each of which is a pole), that extends
to be analytic on 0D, such that g(z) # 0 for all z € OD. Then

1 1 9'(2)
— dl = —
27 Jop °89(2) 2mi Jop 9(2)

dz = NO _Nooa

where Ny is the number of zeros of g(z) in D and N is the number of poles of g(z) in D,
counting multiplicities.

By our construction, ¢(z) has only one zero in U, a simple zero at z = 0. Now pick any
point w in the open unit disk, i.e., |w| < 1, and consider the domain {z € U : |¢(2)| < 1—¢},
where |w| < 1—¢ for some 0 < ¢ < 1. We apply Lemmato this domain and the function
g(z) = ¢(z) — w to conclude that ¢(z) — w has exactly one zero in U. Hence, ¢(z) must
map U conformally onto the open unit disk. O

Remark 7.3. Let us clarify our application of Lemma [7.9 in the proof of Theorem [7.1]
In general, suppose p(z) is a non-constant analytic function on some domain D, zy € D,
wo = ¢(z0) and assume @(z) —wo has a zero of order m at zy. Since the zeros of (z) — wy
are isolated, we can find p > 0 so that p(z) —wy # 0 for 0 < |z — 2| < p. Pick d > 0 to
satisfy |o(z) —wo| > § for |z — 2| = p. Then, the integral

1 /
N(w) = — ﬂdz, with |w — wo| < 0,
w

B 2m |z—z0|=p 90(2) -
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is defined, is an analytic function in the disk |w —wo| < §, and N(w) is the number of zeros
of (z) —w in the disk |z — zo| < p. Therefore, N(w) is integer-valued and thus constant.
Since N(wg) = m, we obtain N(w) =m for lw—wy| < 6. In other words, p(z) attains each
value w, with |w — wo| < 0, m times in the disk |z — zo| < p.

In our proof above, we are defining ¢(z) as in (7.4) and taking zo = wo = 0, m = 1,
0 =1—¢, and applying the Argument Principle accordingly.

7.2 The Yamabe Problem

This section introduces the celebrated Yamabe problem from conformal geometry, and we
discuss its history, motivation, then give a detailed outline of its solution. We shall try our
best to give a relatively self-contained overview of the Yamabe problem giving the necessary
background in Riemannian geometry and the theory of elliptic PDEs on manifolds along the
way. We refer the reader to Section [B| in the appendices and the references therein for a
basic introduction of Riemannian geometry, at least the material needed for our purposes
here. The Yamabe problem is stated as follows.

Conjecture 1 (The Yamabe Problem). Given a closed Riemannian manifold (M,g) of
dimension n > 3, there exists a metric conformal to g with constant scalar curvature.

In other words, this conjecture asserts the existence of some real-valued function f €
C>(M) such that the conformal change of metric § = /g admits constant scalar curvature.
By a closed manifold, we mean the manifold is compact and has no boundary. A simple
example is the standard sphere with metric induced from the Euclidean metric.

The validity of the Yamabe problem indeed holds, but it took the combined efforts of
several mathematicians nearly three decades to solve completely. Conjecture[I]was first raised
by Hidehiko Yamabe in the 1950s, and its formulation was motivated by the fact its solution
may offer an alternative approach to attacking the Poincaré conjecture via analysis rather
than by topological means. It can also be viewed as a generalization of the two-dimensional
setting, which was well understood by that time. More precisely, it generalizes the renowned
uniformization theorem (we studied a special case of this in the previous section).

Theorem 7.2 (Uniformization Theorem for Riemann Surfaces). Each simply connected
(Riemann) surface is conformally equivalent to either one of the following constant cur-
vature models: (a) the open unit disk (hyperbolic space), (b) the complex plane (flat space)
or (¢) the Riemann sphere (compact space).

Yamabe offered a proof of Conjecture [1] in 1960 [36], however, N. Trudinger found a
gap in Yamabe’s proof some years later. Although Trudinger managed to repair Yamabe’s
original proof, he did so under the extra assumption that a particular energy quantity of the
manifold, now known as the Yamabe invariant, did not exceed a certain threshold [31]. T.
Aubin improved Trudinger’s result by identifying the energy threshold (it is closely-related
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to the sharp Sobolev constant) and extended the result to hold for locally conformally flat
manifolds in dimension n > 6. Using a novel approach (and different ideas from before) and
the Positive Mass Theorem, R. Schoen finally settled the remaining cases in [29].

Our notes here will attempt to give a concise outline of the proof of the Yamabe problem
in the spirit of Yamabe, Trudinger and Aubin. For a complete treatment of the Yamabe
problem and for the technical details on aspects we do not cover here carefully, please see
the very nice paper of Lee and Parker [I7], in addition to the aforementioned papers.

We let (M, g) denote a Riemannian manifold with metric tensor g and volume element
dV,, where M = M™ is always taken to be a smooth and connected n-manifold. We denote
by Ric, and S, the Ricci and scalar curvatures.

7.3 The Isoperimetric Inequality

We first introduce the so-called isoperimetric problem and the resulting sharp inequality in
the lower dimensional setting. That is, let us consider any simply closed plane curve C with
prescribed fixed perimeter L, and we let A denote the area enclosed by C. A classical problem
asks among all such possible C with fixed length L, does there exist one that gives maximal
area? Indeed, it turns out the circle of length L uniquely (up to translations) maximizes
enclosed area. More precisely, we have the following.

Theorem 7.3. Let L > 0 be given. Then there holds
41 A < L (7.5)

for all simply closed planar curves C, where equality holds in the “isoperimetric inequality”

(7.5) if and only if C is a circle with circumference L.

Proving this result is fairly elementary, and we sketch the proof given in [26]. Before
that, we shall need Wirtinger’s inequality, which we state here without proof (but a proof
follows from basic arguments using a Fourier series expansion).

Lemma 7.3. If y = y(t) is a 2w-periodic smooth function such that fo% y(t)dt =0, then

27 2 dy )
y(t dtg/ ) dt,
/0 ®) ; (dt)

where equality holds if and only if y is a linear combination of cos(t) and sin(t).

Proof of Theorem 7.3 For a simply closed curve C, let (z(t),y(t)) for a < ¢ < b be a param-
eterization of this curve. Then the length of C is given by

= [as= [ (S () 79

244




and the area of the region enclosed by C is given by the line integral

b
d
A:—/ydx:—/ vt (7.7)
. Y

where we choose the positive orientation of C with respect to its enclosed interior.
Set t = (2m/L)s, and by a change of suitable coordinates, we may assume g := fo% y(t)dt =

0. Then g a2 2 s 72
/0 Car) + (o) dt:/o (3) #=3

Thus,

2T rdx 2 dy\ 2 dx
L2 — 47 A =2 (-) (-) 20" dt
4 7T/0 a) “\a) TVa

:27r/027r (ili—if+y)26l15+27r/027r <%>2_y2dt

Combining this with Lemma and the fact f027r (d”” + y)Q dt > 0, we get L? — 47w A > 0.

Furthermore, L? — 47 A = 0 if and only if C is a circldet with circumference L. ]

In the general higher-dimensional setting, the isoperimetric problem in R" entails mini-
mizing the surface area of all domains with a prescribed volume, or equivalently, maximizing
the volume among all domains whose boundary surface has fixed (n — 1)-dimensional area.
Some proper assumptions are needed to formulate the problem precisely. We consider con-
nected domains 2 C R" whose boundary surface S = 0 is a compact, smooth surface (at
least C? is required). Thus, S is a closed surface, i.e., it is compact without boundary.

A solution of the isoperimetric problem for n > 3 does not appear to have a simple
solution like that of the two-dimensional case. Nonetheless, a solution is derived using the
calculus of variations. If U C R"! is open and u € C%(U), then the graph of u,

{(z,u(r)) e R" ' xR|x € U},

defines a surface in R". We suppose the surface S is described by such a function v : U — R.
Therefore, S is a level set of the mapping (x, u(x)) — z, — u(z) and the downward pointing
unit normal vector v(z) at (z,u(z)) € S is defined by

(Du(x), —1)

V14 |Du(x)]?

v(z) =
and v(x) belongs to the lower hemisphere

ST ={(y,—v/1—1|y]?) : ye R, |y| < 1}.
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We treat x = (z1,9,...,2n_1) and y = (y1, %2, ..., Yn—1) as the coordinates for S and S™*,
respectively, and in these coordinates, the Gauss map is given by

_ Du(x)
Y A Du@P

The second fundamental form of S is the Jacobian of the Gauss map

1w = (52),,

The principle curvatures of the surface S at x are defined to be the eigenvalues of the matrix
II(x). The mean curvature of S at x, denoted by H(z), is the arithmetic average of the
principle curvatures, i.e.,

X —

H(z) = %Trace(fl(x)) = %div( : frl(?xu)(x)]2>

7.4 Minimal Surfaces and Surfaces with constant mean
curvature

7.5 Sharp Hardy-Littlewood-Sobolev inequalities in R"

As encountered numerous times already, knowing the precise value of the sharp constant
to certain functional inequalities and embeddings can help study differential and integral
equations and resolve fundamental problems in other branches of mathematics. In this
section, we shall continue this focus and revisit a class of integral inequalities, the so-called
Hardy-Littlewood-Sobolev (HLS) inequalities. Our objective is to provide accurate estimates
on their best constants and explicitly calculate these constants when possible.

Recall in Section of Chapter [I] we already introduced the HLS inequality and used
Hardy-Littlewood maximal operators and the Marcinkiewicz interpolation inequalities to
obtain the non-sharp version. Here, we use a different ideas to derive the HLS inequality
and provide an upper bound on the sharp constant; and in the diagonal case, we explicitly
compute the sharp constant. Our presentation follows that of Lieb and Loss [21] (also see
[20]). Our strategy to finding the best constant uses a variational approach, which requires we
classify the resulting extremal functions. Interestingly, the extremal functions are solutions
to the Euler-Lagrange system of integral equations.

Remark 7.4. In general, it turns out all ‘reqular’ solutions of (1.37) are essentially unique
[6] and can be classified as having a very specific bubble form. This fact is a direct extension
of the classification result for the critical Sobolev inequality and Lane-Emden equation.

For convenience, we shall state a refined version of the HLS inequality.
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Theorem 7.4 (Sharp HLS inequality). Let p,r > 1 and 0 < A\ < n such that i + % —i—% = 2.
Then there ezists a sharp constant C' = C(n, \,p) such that

[ [ 1@le=yh) do ds] < Clllien Il (7.9

for every f € LP(R™) and h € L"(R™). The sharp constant satisfies

C(n,A,p)SL(M)Wl((A/_”)V"JF( An >A/n>.

n—A\ n pr\\1—1/p 1—1/r
Moreover, in the diagonal case, i.e., if p=1=2n/(2n — \), then
['(n/2 —X/2) (T(n/2)y-1+/n
A\ p) = A) = 7?2 : :
ClnAp) = Cln,2) = w2 ==oes 7 ) (7.9)

In this diagonal case, equality in (7.8|) holds if and only if h = cf, for some constant ¢, and
£() = A + | — )V

for some A € C, v € R\{0} and a € R™.

7.5.1 Rough HLS inequality: a second proof

Some preliminary results are in order.

Proposition 7.1 (Layer Cake Representation). Let v be a (positive) measure on the Borel
sets of the set [0,00) such that

¢(t) = v([0,1))

is finite for each t > 0. Here, note $(0) = 0 and ¢ is Borel measurable since it is monotone
increasing. Now, let (X, M, p) be a o-finite measure space and f any non-negative measurable
function on X. Then

/X o(f(2)) dp = / e | £@) > 1)) w(de).

In particular, if v = ptP~tdt for p > 0, we have

[ rerdn=p [ ute 1) >

And by choosing p to be the Dirac measure at some point v € R" and p = 1, there holds

f(x) = / e (@) dt
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Proof. Define the level sets
Si(t) :=={z : f(z) >t}
and note that

QAwM&ﬁ»wm%:ﬁw/;nbd@uM@Wﬁx

since the characteristic function x(fs# () is jointly measurable. By Fubini’s theorem and
basic calculations, we derive

/OOO/XX{f>t}(ﬂ7) p(dz)v(dt) = /X (/OOO X{f>t}(x)1/(dt)> (da)
- [ ( /OM () n(de) = [ (D))l

and this completes the proof. O

Proof of the Rough HLS inequality. To establish the non-optimal inequality (7.8), we may
assume that || f||Lrny = || 2|l Lr@r) = 1. Thanks to the Layer Cake representation (Proposi-

tion , we may write
|| = )\/OO ¢\ o<y () de,
0
Fa) = [ i) da
) = [ v (o) db
Inserting these representations into the left-hand side of , we get
e [ f@a sl n) dedy

= )\/ / / / / c_()‘+1)x{f>a} (@)X (h>t} (Y)X{j2)<c} (@ — y) dx dy da dbde.  (7.10)
o Jo Jo n JRn
Define
v(a)w(b)u(c)

max{v(a),w(b),u(c)}’

where v(a) = [o, X{r>a} dz, w(b) = [5. X{n>py dz and u(c) = ‘Snn—ﬂc”. Noting that we may

bound one of the characteristic functions in the integrand of ([7.10]), we deduce that

ISA/ / / AV (a,b,¢) dadbde. (7.11)
0 0 0

We may also rewrite the norms of f and g as

I(a,b,c) =

o0

1A% @ny = p/o a’? *v(a)da =1 and 1Al gy = T/o b tw(b) db = 1.
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Now, if we assume v(a) > w(b), we get the following estimate

/ M1 (a,b,c)de < / Dy (b)u(c) de + / ¢V (b)u(e) de
0 u(c)<v(a)

u(c)>v(a)

1| plelam/is -
< w(b)—/ O D4n dc+w(b)v(a)/ O+ g
n (v(@n/I51 )1/
1 ot IV DU ™
= — (s /)N w(byo(a) +5(18 /) w(byo(a) =
n

)\(n—)\)(|

S™ L /)M mMw(b)v(a) =M.

We apply similar arguments for the case w(b) > v(a) and collecting terms accordingly to get

I< (st ) / / +(a,b) dadb, (7.12)
n—A o Jo

where

z(a,b) == min{w(b)v(a) ™", w(b)"v(a)},

and we note that w(b) < v(a) if and only if w(b)v(a)' ™ < w(b)'~*"v(a). Splitting the
integral on the right-hand side of (7.12)) and applying Fubini’s theorem, we get

o) 00 00 ab/" 00 oo
/ / z(a,b)dadbg/ v(a)/ w(b)l‘A/"dbdaJr/ v(a)l_’\/”/ w(b) dbda
o Jo 0 0 0 ap/"
00 aP/T 0o sT/p
= / v(a)/ w(b) M dbda—i—/ w(s)/ v(t) M dt ds
0 0 0 0

= ]1 + [2.

We estimate the first integral term, I;. Indeed, setting m = (r —1)/(1 — A\/n) and using the
conjugate pair n/\ and "<, Holder’s inequality leads to

A
n

aP/T aP/T 50
/ w(b)MmymhT™ db < ( / w(b)-n db)l_%( / b= db)
0 0 0
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and since mn < A, there holds fooo b= db = /\_’\ = A < 00. We then get

mn n—r(n—2>\)

I < /Ooov(a)((/oap/rw(b) db)l—i(/ooobmn/xdb)i)da
<) [ i) ([ o)

[ F I omny IR ny 12/
:<n—r(/:1—)\))A/ ;(R)( L(R))l 5

r

B 1 Ar A/n p r(1=\/n) _ 1 )\/n A/n
opr (n—r(n — A)) ||f||L”(R”)||h||L’“(R") - pr(l/r -1 +)\/n)>
1 ( A/n )/\/n

T pr\1—1/p

A/n
1-1/r

A/n
Analogous symmetric arguments will also lead to I, < }%( ) . By combining these

estimates for I; and I, we deduce

[ [ @ sawaa] < 2 (N 00

n—A\ n
no /ST MR A/n \Mn A/n \Mn
<o) W) )
n—A\ n pr\\1—1/p 1—1/)r
This establishes the rough HLS inequality. [

7.5.2 Conformal invariance of the diagonal HLS inequality

We now focus on the diagonal case p = r = 2n/(n — \) in the HLS inequality (7.8), in
which we may exploit conformal invariance and symmetry properties to explicitly calculate
the best constant and classify the functions f and g that achieve it. For the reader’s
convenience, we go over some necessary prerequisite material.

Rearrangements and rearrangement inequalities

We introduce the notion of a symmetric rearrangement of a given set or a function. The
proper class of functions for introducing our notion of rearrangement are the Borel mea-
surable functions that vanish at infinity. Namely, if f : R® — C is a Borel measur-
able function, then f is said to vanish at infinity if the (n-dimensional) Lebesgue measure
{z € R™ : |f(x)| > t}| is finite for each t > 0.

If A C R"is a Borel set and |A| < oo, we define A*, the symmetric rearrangement of the
set A, to be the open ball B,.(0) whose volume is equal to |A], i.e.,

A ={z eR" : |z| <r}
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such that
Al = r = " .

The symmetric-decreasing rearrangement of a characteristic function of a set A is given by

Xil = XA*,

which can be shown to be lower semicontinuous. Notice that if f : X — R is a measurable
function on a measurable space (X, M), then the level set

Sit)y={xe X : f(zr) >t} foreacht e R

is measurable, i.e. S¢(t) € M. Then recall f is lower semicontinuous if Sf(t) is open for
each t € R.

If f:R" — C is a Borel measurable function vanishing at infinity, and thanks to the
Layer Cake Representation Theorem, we define f*, the symmetric-decreasing rearrangement

of . by .
fH(z) = / iy (x) dt. (7.13)

It is interesting to compare this with the fact that

|f(z)| = /000 X{|f|>43 (@) dt.

The term given to the rearrangement f* can be explained by the following useful properties.

Proposition 7.2. Given a Borel measurable function f that vanishes at infinity, its symmetric-
decreasing rearrangement f* is a non-negative lower semicontinuous (and therefore a mea-
surable) function. Moreover, f* is radially symmetric and non-increasing.

Proof. 1t is obvious f* is non-negative from the definition (7.13]). For each ¢ € R, we show
E, = Sp(t) ={z : f*(2) >t} is open and therefore a Borel set, namely, it suffices to show
Ef ={z € R" : f*(z) <t} is closed. Pick t > 0 and suppose the sequence {z,}>>, C Ef
converges to some point z. Then

£ () = / Xi1mey (&) ds = / XBn. (0)(@n) ds.
0

0

By Fatou’s lemma,

t> 1iminf/ XB,,(0)(%n) ds Z/ XB,,(0) () ds,
0 0

n—oo

and this verifies + € Ef and therefore Ef is a closed subset. This also proves the lower
semicontinuity property of f*.
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Assume |z| = |y| and let ; so that [{z : |f(2)| > t}| = | B (0)].

o0

f*(ﬂf):/o X750 (T) dt:/o XB,,(0)(T) dt:/g XB,,(0)(T) dt:/o Xiip1s0(v) dt = f*(y)

and this verifies f* is radially symmetric. Likewise, if |z| < |y|, then xp, (0)(z) > Xx8,,0)(¥)-
Therefore,

f*(x):/o X513 () dt:/o XB,,(0)(T) dtZ/ XB,, () dt:/o X{ip=0(¥) dt = f*(y),

0

that is, f* is non-increasing. O]
Proposition 7.3. The level sets of f* are just rearrangements of the level sets of f*, i.e.,
{r eR": f(x) >t} ={xeR" : |f(x)| >t}

Proposition 7.4. For any measurable function ¢ = ¢1 — ¢o, where ¢ and ¢o are monotone

non-decreasing, ¢1(0) = ¢2(0) = 0 and either [, ¢1(|f(z)]) dx or [o, d2(|f(x)]) dx is finite,
there holds

. o(|f(x)]) do = . o(1f*(x)]) de. (7.14)
Consequently, for f € LP(R™)
1 lleny = [/ lLony for all1 < p < oo.

Proposition 7.5. Let f and g be non-negative measurable functions on R™ wvanishing at
infinity, and suppose f(x) < g(z) for all x € R™. Then

f*(z) < g*(x) for all x € R". (7.15)

Theorem 7.5 (Nonexpansivity of rearrangements). Let J : R — R is a non-negative
convez function such that J(0) = 0, and let f and g be non-negative measurable functions
on R™ that vanish at infinity. Then

J(f*(x) = g"(x))de < [ J(f(2) — g(x)) d. (7.16)
R™ Rn
Particularly, if we also assume J is strictly conver and f = f*, and f is strictly decreasing,
then equality in (7.16) implies that g = g*.

Isometries of the unit sphere and the conformal group

The sharp HLS inequality enjoys rich symmetry and invariant properties essential in its
proof. We describe such properties carefully.
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Given a function f(z) defined in R", and a given point a € R", we define the translation
operator by 7, f(x) = f(r—a). If R € O(n), where O(n) is the orthogonal group of rotations
and reflections of R", we define the operator by Rf(z) = f(R 'z). A simple calculation
will reveal that inequality is invariant under translations, rotations and reflections. By
this we mean, for instance, if we replace f(z) and h(x) by 7,f(x) and Rf(z) and Rh(x),
respectively, in ((7.8)), we see that both sides of the HLS inequality does not change. A similar
property holds for reflections and rotations. More generally, the HL.S inequality is invariant
under the following action of the Euclidean group:

[(R,a), f(z)] — f(R'z —a) for R € O(n), a € R,

and similarly for h. The Euclidean group of transformations define rigid motion, which
means geometric figures in Euclidean space remain congruent under such actions.

We define the dilation or scaling operator f5(x) = 6% f(dz) for § > 0, where  is some fixed
positive number. We consider the specific scalings fs(z) := 0"/? f(6x) and hs(x) := 5"/ h(5z).
Then the Lebesgue norms are preserved by these scalings, i.e.,

1/p 1/p
il = ([ 16np@aran) =5 ( [ 1rapsan)" = 15l

where we used the change of variables y = dz. Likewise, we can show ||hs]| Lony = [|h]] Lo rn)-
The left-hand side of the HLS inequality is also invariant with respect to these scalings, since

‘ / / SV F(8) |z — y| 6T h(6z) d:vdy‘ — §5t? “‘ / f(0m)[6z — oy|h(6) da:dy‘
Rn n

ST / F@)l7 — gl b~ drdg]
n R’ﬂ

| [ [ @k =)

where we used the change of variables = dx and y = dy and the fact that © —|— + A =2n.
We have verified that (7.8) has scaling symmetry in the sense if we replace f(x ) and h(x)
by fs(z) and hs(x), then the inequality persists.

The reader may wonder if the Euclidean group defines all the invariants for the HLS
inequality. Recall that stretching is a

7.5.3 Proof of the sharp HLS inequality
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APPENDIX A

Basic Inequalities, Sobolev Embeddings, and Convergence Theorems

This appendix covers some basic inequalities, embeddings and convergence results that we
frequently apply throughout.

A.1 Basic Inequalities

Theorem A.1 (Cauchy’s inequality). There holds for a,b € R,

a? b?
b < — 4+ —.
ab < 2—1-2

More generally, we have Cauchy’s inequality with €:

bQ
ab§6a2+4— (a,b>0,e>0).
€

We shall need to recall the definition of a convex real-valued function.

Definition A.1. We say a set U in R"™ is conver if Tx + (1 — )y € U for all z,y € U and
all 0 < 7 < 1. For a convex set U, we say a real-valued function f is convex on U if

fre+ A —1)y) <7f(x)+ 1 —7)f(y) forallz,y € U and all T € (0,1).
If the above inequality is strict, then we say f is a strictly convex function on U.

Theorem A.2 (Young’s inequality). Let 1 < p,q < oo and 1/p+1/q=1. Then
P B

(Zb S a_ + )

p q

and equality holds above if and only if a? = b9.
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Proof. Take p,q > 1 so that 1/p + 1/¢ = 1, and assume a and b is a non-trivial pair of
positive reals, since the inequality is trivial otherwise. Set 7 = 1/p and 1 — 7 = 1/q. Since
the logarithmic function f(x) = —log(x) is convex on (0, 00), we get

log(ab) = log(a) + log(b) = 7log(a’) + (1 — 7)log(b?) < log(ra? + (1 — 7)b7), (A1)

with equality if and only if a? = b?. The desired result follows after applying the exponential
function to (A.1J). O

Theorem A.3 (Holder’s inequality). Assume 1 < p,q < oo and 1/p+1/q=1. Ifu € LP(U),
ve LIU), then

/U|uv| dz < [[ull o 12l oo, (A.2)

Equality holds if and only if o|f|P = B|g|? almost everywhere for some constants o, B with

(o, B) # (0,0).

Proof. Let uw € LP(U) and v € LY(U). From the homogeneity of the LP norms, we can
assume that ||u||z»@w) = ||v||Le(y = 1. Then by Young’s inequality of Theorem [A.2]

1 1 1 1
/WWst—/MWM+-/hwm=—+—=1=wwmmmmm»
U pJu qJu p q

An easy extension of this inequality is the following whose proof we omit.

Theorem A.4 (General Holder’s Inequality). Let 1 < py,pa, ..., pp < 00 with > ;" pik =1,
and assume uy, € LP*(U) for k=1,...,m. Then

/ Jur -t dze < T T | o 0. (A.3)
u k=1

Theorem A.5 (Jensen’s inequality). Assume f : R™ — R is conver in R™, and U C R"
1s bounded and open. Let u: U — R™ be summable. Then

f<|—é|/Uudx> < ﬁ/Uf(u)dx.

Theorem A.6 (L? interpolation). Assume that 1 <p <r <q < oo and

1 0 1-46
L6, (-0
p q

Suppose also that w € LP(U) N LY(U). Then uw € L"(U) and

<

lull rry < el Zogon 1l agery- (A.4)
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Proof. Since %T + %

= 1, Holder’s inequality yields

(1-0)r

or
/ |u|r dx:/ |U|0r|u|(1—6))r dr < (/ |u|gr£) P (/ |u|(1—0)r7(1_‘19)r daj) q
U U U U

Theorem A.7 (Gronwall’s inequality). Letn(-) be a non-negative absolutely continuous (i.e.,
differentiable a.e.) function on [0,T], which satisfies for a.e. t, the differential inequality

() < o(t)n(t) + (1), (A.5)

where ¢(t) and (t) are non-negative, summable functions on [0,T]. Then

]

t
n(t) < elo#s)ds <77(0) + / P(s) ds) forall 0 <t <T. (A.6)
0
In particular, if n(0) =0 and

' (t) < o(t)n(t) for a.e. te0,T],

then
n=0 on [0,T].

Proof. From (A.5)),

%(n(s)e_fos ¢(T)dr> — 6_fos¢(7”)dr(77/(8) N ¢($)ﬁ<$)) < €_f05¢(r)dTw(8) forae. 0<s<T.

Integrating this we get, for each 0 <t < T,

n(t)e™ o #0)ar < p0) 4 /t e~ Jo ¢y (s) ds < (0) + /tw<s> ds.
0

0

Sometimes, it is more convenient to use the integral form of Gronwall’s inequality.

Theorem A.8. Let (t) be a non-negative, summable function on [0,T]| which satisfies, for
a.e. t the integral inequality

E(t) <y /Otg(s) ds + C2, (A7)
for some constants Cy,Cy > 0. Then
E(t) < Oy(1 + Cite) for ae. 0 <t <T.
In particular, if
() <C1 /tg(s) ds forae 0<t<T,
then 0

=0 on[0,T].
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Proof. Set n(t fo s)ds so that 1/ (t) < Cin(t) + Cy for a.e. t in [0,T]. According to the
differential version of Gronwall’s inequality, we obtain

n(t) < e“(n(0) 4+ COyt) = Cote.
The result then follows from since

&(t) < Cin(t) + Cy < Co(1 + Cyte™).

A.2 Sobolev Spaces and Sobolev Inequalities

We define the notion of weak derivatives then use it to define the so-called Sobolev spaces.
Suppose u,v € Lj,.(U) and a € N is a multi-index. We say that v is the ath-weak partial
derivative of u, written D%u = v, if

/ uD*¢ dx = (—1)!! / vodx for all ¢ € C°(U).
U U

Let ke NU{0} and 1 < p < 0.

Definition A.2. The Sobolev space WEP(U) consists of all equivalence classes of locally
summable functions u : U — R such that for each multi-index o with |a] < k, D%

exists in the weak sense and belongs to the Lebesque space LP(U). If p = 2, we will write
HYU) = Wk2(U). For 1 < p < oo, we equip W*P(U) with the norm

1/p
lullwrnay = (3 / D dr) " forue WEHOU).
|| <k
For p = oo we define the norm of W+ by

[ullwree @y = Z 6sssgp |D%|  for u € W’“’(U),

la| <k

Theorem A.9. For each k € N and 1 < p < oo, the Sobolev space W*P(U) is a Banach
space. In particular, H*(U) equipped with the inner product

(u,v) gry = Z / D*u - D*vdx  for u,v € H*(U),
la|<k
18 a Hilbert space.
Definition A.3. We define WE*(U) to be the closure of C=(U) in W*P(U). If p = 2, we
write HY(U) = WA (U).
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Actually, there is a historical connection between the notation above. Namely, for some
time, it was not clear the connection between the Sobolev space W*P(U) and the space
H"?(U) defined as the completion of C*(U) with respect to the || - ||y .y norm. In 1964,
Myers and Serrin established that W*P(U) = H*P(U) for all domains U C R". This is a
consequence of the fact that C>(U) N WH"P(U) is dense in W*P(U) for 1 < p < oo and thus
WHP(U) is separable. We revisit this below but focus mainly on the case when k = 1.

We can extend the H* spaces to the fractional-order Sobolev spaces in R™ with the help
of the Fourier transform. We define such fractional Sobolev spaces here but an alternative
on more general construction can be done using the Riesz potentials, which also yields

corresponding Sobolev inequalities (see Section [3.1.5]).

Definition A.4. Let 0 < s < co. We define the Sobolev space H*(R™) to be the collection
of functions u € L*(R™) such that (1 + |y|*)u € L*(R") and ||u||gs@n) = [[(1 + |y]*)@| 2®n),
where u = Flu].

Here, F[] is the Fourier transform

FU) = s [, ¢ ) de

The following verifies that we recover the usual spaces when the orders is a non-negative
integer k.

Theorem A.10. Let k € NU{0}. A function u € L*(R") belongs to H*(R™) if and only if
(1+ [y € LAR").
Moreover, there exists a positive constant C' such that
C Ml ey < N+ [y")all r2gny < Cllullirgany for each u € HE(R™).

Next, we derive a couple of essential inequalities we will need to establish the so-called
Sobolev embeddings. Specifically, we introduce and prove the Gagliardo—Nirenberg—Sobolev
inequality and Morrey’s inequality. For each estimate, we establish its corresponding Sobolev
embedding theorems.

Theorem A.11 (Gagliardo-Nirenberg-Sobolev). Assume 1 < p < n and denote p* :=
np/(n — p). There exists a constant C' = C(n,p) such that

[ull 2o ey < C(n, p) | Dull Loy (A.8)
for all uw € CL(R™).

Remark A.1. Note that the functions u must have compact support to discriminate from
obvious cases such as constant functions. However, it is interesting that the constant C' does
not depend on the size of the support of u.
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Proof. Step 1: We first prove the estimate for p = 1.
Since u has compact support, for each : = 1,2,...,n and x € R" we have

U(l"):/ Uxi(%,--w%—h?/z‘,xiﬂ,-~,In)dyi;
and so for e =1,2,...,n,
) < [ Duter ) dy

Therefore,

[e.9] n—1

lu(z)|71 < H (/ |Du(a:1,.‘.,yi,...,xn)|dyi)
i=1 -

Integrating this inequality with respect to x; yields

oo N co M oo ﬁ

/ |u|nldx1§/ H(/ |Du|dyz~) dxy

: 7 02:1 : %1 co M1 00 %1
([ 1oaan)™ [TTL( [ 10utdn) "™ ae,

1

0 =2
o ﬁ n o) 0 n—1
(/ | Du| dyl) ( / / | Du| da, dyi) 5 (A.9)

where we used the general Holder’s inequality in the last inequality. Now integrate (A.9)
with respect to xs:

3 n )
/ / |u|nn1dq;1dq:2§(/ / |Du\d;1:1da:2) / H 177 day,

00 j=1,i£2

IN

where

Applying the general Holder’s inequality once more to this yields

[ee] o] n e 9] oo ﬁ oo oo n—1
/ / |u| =T dxy dzy < (/ / | Du| day da:2> (/ / | Du| dy, dng)
1

n

0o poo oo =T
H (/ / / | Du| dxy dxg dy,;)

=3
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We continue integrating with respect to x3, x4, ..., x,, until we arrive at

1

Jul 7T do < H(/ / ]Du\da:l...dyi,...dxn>n_
R™ i=1 —00 —00
=
_ ( |Du|dx> . (A.10)
R

Hence, this proves the theorem for p = 1.
Step 2: Consider the case where p € (1,n). If we apply estimate (A.10) to v := |u|” (v > 1
is to be determined below), we obtain

( |u]nw1dx) ! g/ \Dv\dx:fy/ ]u\7’1|Du|d1‘
Rn Rn Rn

<~ (/ |u| OV dx) ’ (/ | Du|? dm) " (A.11)

Set
pln—1)
=
so that
e e e
n—1 p—1 n-—p

Thus, (A.11]) becomes

1

( i dx) <C < | Du|? dx) ’
Rn Rn

and this completes the proof. O

3

Theorem A.12 (Morrey’s inequality). Assume n < p < co. Then there exists a constant
C(n,p) such that

|ullcon-n/ogny < C(n, p)llullwre@n (A.12)
for all uw € C1(R™).

Proof. Step 1: We claim there exists a constant C' = C(n) depending only on n such that

R Y 1Dufy)|
1B ()] /BT(@' ) —ule)ldy < © /BT@) T (A.13)

for each open ball B, (z) C R™.
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To show this, fix any point w € dB;(0). Then, if 0 < s < r,

*d
/0 %u(x + tw) dt

< / \Du(z + tw)] dt.
0

lu(x + sw) — u(z)| =

/ Du(z + tw) - wdt
0

Hence,
/ lu(z + sw) — u(x)| ds, < / / | Du(x + tw)| ds,, dt. (A.14)
2B, (0) o JoBi(0)

We estimate the right-hand side of this inequality to get

S S D
// |Du(z + tw)| ds,, dt = // | u_(?lJ)|dsydt
0 J8By1(0) 0 JIBt(x) tr
D D
B TR g T
B |7 — ¥ B.() [T —y|"

where y = x + tw and t = |z — y|. The left-hand side can be written

1
/ lu(z + sw) — u(x)| ds,, = — / lu(z) — u(x)|ds.,,
8B1(0) "7 JoB,(x)

where z = z + sw. Combining the preceding two calculations in (A.14]), we obtain the

estimate D
[ w -l <o [ AP,
9B (x) B (@) [T —y|"

Integrate this with respect to s from 0 to r yields

/B( Tt~ )] dy < Uy ()

n Jp@le—yl"t T

This proves our first claim.
Step 2: Fix z € R". Applying estimate (A.13]) then Holder’s inequality, we get
1

1
u(x)] < B o u(z) — uly)| dy + Bi@)] S |u(y)] dy

Du(y
<o AL gy sy

p—1

1 b1
» 1 !
<C ( | Dul? dy) (/ DL dy) + COllull oy
Rn Bi(z) [T — Y| Pt

< CHunl,p(Rn).
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The last estimate holds since p > n implies (n — 1) 7 < n, so that

1
/ e dy<oo
) o —y|""

As x € R™ was chosen arbitrarily, there holds

sup |u(z)] < Cllulwirm@n)-
z€R™

Step 3: Next, choose any two points z,y € R" and set r := |z —y|. Let W := B,.(z) N B,(y).
Then

1
ute) )] < 7 [ o) = o) s+ i [ jule) =)tz = 1

Furthermore, estimate ({A.13)) allows us to estimate
L = lu(z) —u(z)|dz < ( lu(z) — u(z)] dz)
(W] / |Br ()] /5, ()
p—1

SC(/ |Du|pdz)p / dzl 3
(@) @) |z — 2|V

p—1

<C< n—(n— 1) 1) P ”DUHLP(RTL)

S CT’l_E ||Du||Lp(Rn)

Similarly, we calculate

1 _n
b= i [ Ju) = u(2)|ds < Cr' 5 D ager
W]

Hence,
lu(z) —u(y)| < Cr' 7 || Dullo@ny = Cla = y['~# || Dul| ony,
therefore,
|u(z) — u(y)|
[u] or-n = sup —————73— < Ol Dul|to@n).
ORI TS

A.2.1 Extension and Trace Operators

Although we use the Gagliardo-Nirenberg-Sobolev and Morrey inequalities to prove the
classical Sobolev embedding theorems, we shall also make use of the following basic results.
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Theorem A.13 (Extension Theorem). Assume U is bounded and OU is C*'. Select a bounded
open set V' such that U CC V. Then there exists a bounded linear operator

E:WW(U) — WP (R")
such that for each uw € W'?(U) there hold
(a) Fu=u a.e. inU,
(b) Eu has support within V,

(¢) | Bullwiss < Cllullwos

with the positive constant C' = C(p,U, V') depending only on p, U and V. Here Eu is called
an extension of u to R™.

Theorem A.14 (Trace Theorem). Assume U is bounded and OU is C'. Then there exists
a bounded linear operator
T:WhH(U) — LP(0U)

such that

(a) Tu = ulpy if u e WH(U)N C(U),

(0) || Tu|| trovy < Cllullwrewy for each w e WH(U)

with the positive constant C' = C(p,U) depending only on p and U.

Remark A.2. The trace operator T enables us to assign boundary values along OU to func-
tions in WYP(U). This is especially useful for studying the Dirichlet problem and character-
izing the space WyP(U), the closure of C°(U) in WYP(U), as the WP functions vanishing
at the boundary. For example, if U is bounded and OU is C*, and uw € WHP(U), then (see
[9][Theorem 2 on page 2753])

we WyP(U) if and only if Tu =0 on OU.

Not surprisingly, the above extension and trace theorems can be extended to the higher-
order cases, and we state these generalized results without proof but refer the reader to the
reference [I]. Prior to doing so, some definitions and notation are needed. For any positive
integer k, 1 < p < oo and an open and bounded domain U with C* boundary OU, we denote
by W =1/PP(9Q) the space of “traces” T'(u) = u|sy of functions u in W*?(U), and we treat
it as the collection of equivalence classes {[u] + WP (U)|u € W*P(U)} equipped with the
norm

HT(U)”W’C—UPW((?U) = in£ ”UHW’“P(U)'
u—veWy P (U)

Evidently, W*='/PP(9U) is a Banach space. As per the usual convention, we shall write
WH1/22(9U) = H*=Y/2(9U) whenever p = 2. Then the following extension result holds.
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Theorem A.15. Let 1 < p < oo, k > 1 and U is an open and bounded domain with C*
boundary OU. Then there exists a bounded linear operator Ext : W*F=1/PP(9U) — WkP(U)
such that Ext(u)|oy = u for each uw € W*1/P2(9U).

In the special case k = 1 and p = 2, the trace operator T': H'(U) — H'?(0U) with
u — ulsy is a linear isometry from the closed orthogonal complement of H}(U) in HY(U)
onto H'/2(9U). Thus, by the open mapping theorem, we can extend this to a bounded
operator Ext : HY?(0U) — HY(U).

Furthermore, the following embeddings hold.

Theorem A.16. Let 1 < p < oo, k > 1 and U is an open and bounded domain with C*
boundary OU. Then

WHEP(QU) — WrVPr(9U) — WE=12(9U)
where the embeddings are compact. In particular, we have the compact embedding

HY(U) — L*(9U).

A.2.2 Density of smooth functions in Sobolev spaces

The next property concerns the global approximation of functions in W1?(U) by smooth
functions.

Theorem A.17 (Density Theorem). Assume that U is bounded and suppose that u €
Whe(U) for some 1 < p < oo.

(a) There exists functions u,, € C®(U) N W' (U) such that

Upy — u in WHP(U).

(b) If, in addition, OU is C*, then statement (a) holds but the approximating sequence of

functions can be taken to be smooth up to the boundary, i.e., u,, € C(U).

A.2.3 Sobolev Embeddings and Poincaré Inequalities

The first embedding theorem follows from the Gagliardo-Nirenberg-Sobolev inequality.

Theorem A.18 (Sobolev embedding 1). Let U be a bounded open subset of R™ and suppose
U is C*. Assume 1 <p<n andu € WH(U). Then u € LP (U) with the estimate

[ull v oy < Cn, p, U)lullwr @y,

where the constant C' = C(n,p,U) depends only on n,p, and U.
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Proof. Since OU is C*, the extension theorem of Theorem implies that there exists an
extension Fu = u € WIP(R") such that 4 = u in U, @ has compact support, and

@llwrie@ny < Cllullwr@)- (A.15)

Since u € WP(R") has compact support, the Density theorem or Theorem implies
that there exists a sequence of functions u,, € C2°(R") (m = 1,2,...) such that

Uy, — U in WHP(R™). (A.16)
From the Gagliardo—Nirenberg—Sobolev inequality, we obtain
[t — Ul||Lp*(Rn) < C||Duy, — DulHLP(R”)

for all [, m > 1. Hence,
Uy — @ in L7 (R"). (A.17)

Moreover, the Gagliardo-Nirenberg-Sobolev inequality also implies

[tm Lo* &ry < Cll Dt || o rn),

Therefore, (A.16]) and (A.17) imply

4] Lo* mny < Cl|D|| Lo wny,
This inequality and (A.15) complete the proof. O

Theorem A.19 (Sobolev embedding 2). Assume U is a bounded open subset of R™. Suppose
w e WyP(U) for some 1 < p < n. Then we have the estimate

[ull oy < Cn,p, g, U)l| Dull e )

for each q € [1,p*], where the constant C = C(n,p,q,U) depends only on n,p,q, and U. In
particular, for all 1 < p < oo,

[ull ey < C(n,p,q, U)|[Dull o). (A.18)

Remark A.3. Estimate (A.18) is sometimes called Poincaré’s inequality. Consequently,
this inequality implies the norm ||Dul|») is equivalent to ||ullwir@y in Wy*(U) provided
U is bounded.

Proof of Theorem[A.19. Since u € WyP(U), there exist functions u, € CX(U) (m =
1,2,...) converging to u in WHP(U). We extend each function u,, to be 0 on R"\U (we
do not need to invoke the extension theorem) and apply the Gagliardo—Nirenberg—Sobolev
inequality to obtain

[ull Lo+ @y < CllDull o wy.

Since p(U) < oo, basic interpolation theory says the identity map, I : L (U) — L(U), is
bounded provided 1 < ¢ < p*, i.e., [[ullraw) < Cllull o=y if 1 < ¢ < p*. ]
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Definition A.5. We say u* is a version of a given function u if u = u* a.e.
The next embedding theorem is a result of Morrey’s inequality.

Theorem A.20 (Sobolev embedding 3). Let U be a bounded open subset of R and suppose
its boundary OU is C'. Assume n < p < oo and uw € W'P(U). Then u has a version
u* € CO(0), fory=1- o, with the estimate

[u"]|con @y < Cln,p, Ullullwrew).
The constant C = C(n,p,U) depends only on n,p and U.

Proof. We only consider the case n < p < co since the case p = oo is easy to prove directly.
Since QU is C, the extension theorem implies that there is an extension Fu = u € W (R"™)
such that « = w in U, u has compact support, and

tllwre@ny < Cllullwr@)- (A.19)

Since u has compact support, Theorem implies there exist functions u,, € C*(R™)
such that
Uy, — U in WHP(R™). (A.20)

According to Morrey’s inequality, ||t — wllcormn) < Cllum — wlwrsgn) where y =1 -2
for all I,m > 1. Hence, there exists a function u* € C%?(R™) such that

Uy, — u* in CP7(R™). (A.21)

Owing to (A.20) and (A.21]), we see that u = u* a.e. in U, so u* is a version of u. Morrey’s
inequality also implies ||ty ||cor@n) < C|tim||wrem@n). Thus, (A.20) and (A.21)) imply

||U*HCOW(W) < CHﬂHWLP(Rn).
This inequality and (A.19) complete the proof of the theorem. ]

The previous Sobolev inequalities for W1P(U) can be further generalized to the Sobolev
spaces W*P(U) for k € N.

Theorem A.21 (General Sobolev inequalities). Let U be a bounded open subset of R™ with
a C' boundary OU. Assume u € W*P(U).

(i) If k <%, then u € LY(U) where

1 1 k& np
q p n

Cn—kp
We have, in addition, the estimate

[ulla@y < C(k,n, p, U)|ullwes @)
The constant C = C(k,n,p,U) depends only on k,n,p, and U.
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(it) If k> %, then u € CHLI(@), where

= [E] —i—l—]—p, zf; 18 not an wnteger ,
any positive number < 1,1f % s an integer.

We have, in addition, the estimate
HUHC’“*[%]*L’Y(U) < C(ka n,p,7, U)HuHWkp(U)7
the constant C = C'(k,n,p,~,U) depending only on k,n,p,~, and U.

Proof. The proof is standard, similar to the aforementioned special cases above, and we refer
the reader to Evans [9] for more details. O

Remark A.4 (Case p = n). In the endpoint borderline case for p € [1,n), p* = np/(n —
p) — +oo by sending p — n which suggests that W™(U) C L>*(U). Unfortunately,
this only holds when n = 1 and fails for n > 2. For example, if we take n > 2 and
U = B1(0) C R, then the function loglog (1 + ﬁ) belongs to WH™(U) but not to L>=(U).
However, BMO(U), the space of functions with bounded mean oscillation, is the proper
embedding space to replace L>®(U) in order to preserve the embedding of the Sobolev space

(see Corollary[A.1]).

The next theorem is on the compact embedding of Sobolev spaces into Lebesgue spaces.

Theorem A.22 (Rellich-Kondrachov compactness). Assume U is a bounded open subset of
R™ with C* boundary OU. Suppose 1 < p < n, then

Whtr(U) cc LY(U)
for each 1 < q < p*.

Proof. 1. Fix1 < ¢ < p* and note that since U is bounded, Theoremimplies Whr(U) C
LA(U) and |lu||Le@y < Cllul|lwrr@y. Thus, it remains to show that if {u,}°_, is a bounded
sequence in W'P(U), there exists a subsequence {uyy,, }52, which converges in L(U).
2. By the Extension theorem, we may assume, without loss of generality, that U = R™ and
the functions {w,,}5°_; all have compact support in some bounded open set V' C R™. We
also may assume

sup |t || wr1p () < 00. (A.22)
3. We first examine the smoothed functions

U, = Me kU, (€>0,m=1,2,3,...),

where 7. denotes the standard mollifier. We may assume that the functions {u$,}>°_; all
have support in V' as well.
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4. We claim that
us, — Uy, in LY(V) as € — 0 uniformly in m. (A.23)

To prove this, we note that if u,, is smooth, then

u @) — (@) =~ [ 0 (T2 (n(2) — (@) dz
fo? ()

en €

B /B 1) (e =€) = ) dy

= [ 10 [ Gyt — ety dey

— e[ ) / Dt — ety) -y dt dy.
B1(0) 0

/|u )|d:c<e/ n(y //]Dumx—ety)]d:cdtdy
/|Dum )| dz.

By approximation, this estimate holds if u,, € W'?(V). Since V is bounded, we obtain

Therefore,

w5, — L2 vy < €l Dumllvy < €Cll Dum||ov),
By virtue of , we have
us, — Uy, in L*(V) uniformly in m. (A.24)
Then since 1 < g < p*, the L? interpolation inequality yields
s = wnll oy < llutgy = wmll 7l = wmll 7 )

where % = 0—1—% and 6 € (0,1). As a consequence of (A.22)) and the Gagliardo—Nirenberg—
Sobolev inequality, we obtain

luf = | avy < Cllug, = umll Ly

Hence, (A.23) follows from ({A.22)).

5. Next, we claim that for each € > 0, the sequence {u,,}5°_; is uniformly bounded and
equicontinuous.
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Indeed, if x € R™, then
!U@Am)\S‘K;mﬁnxx-—yﬂum(yﬂdyféHﬁJhp%RﬂHumHLwV)EZC%_”<100,
for m =1,2,.... Similarly,
| Dug,, ()] < / [ Dine(z = y)l|um(y)l dy < [1Dnel| ey |20y < Ce ™D < o0,

Be(z)

for m = 1,2,.... Thus, the claim follows from these two estimates.
6. Now fix § > 0. We show that there exists a subsequence {u,; }32; C {tn }p—; such that

lim ||umj - UmkHL‘I(V) S 0. <A25)

j,k—00
To see this, we employ ({A.23]) to select € > 0 suitably small such that
|y, — Um||Laqy < 0/2 (A.26)

form=1,2,....

Now observe that since the functions {u,,}>°_;, and thus the functions {uf, }°_,, have

support in some fixed bounded set V' C R", we can apply the claim in 5. and the Arzela—
Ascoli compactness theorem to extract a subsequence {uy, }32; C {uf, };7_; which converges
uniformly on V. Therefore,

limsup [luy,, — ug,, [ze(v) = 0.
J,k—00

But then this combined with (A.26]) imply

lim sup ||umj = Umy, ||LQ(V) <0
j,k—00

This proves (A.25).
7. By applying assertion (A.25) with 6 = 1,1/2,1/3,... and use a standard diagonal argu-

ment to extract a subsequence {uy,;}32; C {um fo— satisfying

Hm sup || thm, — Uy || 22y = 0.
l,k— o0

This completes the proof of the theorem. O]

Remark A.5. Since p* > p and p* — 00 as p — n, we have
W' (U) cc LP(U)

for all 1 < p < oo. In addition, note that
Wy (U) cc LP(U),

even if we do not assume OU is C*.
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The Rellich-Kondrachov compactness theorem allows us to establish the following Poincaré
type inequalities. We omit their proofs but refer the readers to Evans [9] for more details.

Theorem A.23 (Poincaré’s inequality). Let U be a bounded, connected, and open subset of
R"™ with C* boundary OU. Assume 1 < p < co. Then there exists a constant C = C(n,p,U)
depending only on n,p, and U, such that

[ = (wollzew) < Cn,p, U)l| Dl e )
1
for each function uw € WP(U) where (u)y := m/ udy.
U

Theorem A.24 (Poincaré’s inequality on balls). Assume 1 < p < co. Then there exists a
constant C' = C(n,p) depending only on n and p such that

| — (W)ar| e (B (2)) < C(n,p) - 7| Dul| Lo (B, ()

1
for each ball B,(z) C R™ and each functionu € W'P(B,(z)) where (u),, := ——— udy.
|B,(z)] Br(x)
A simple application is the embedding of W*(R™) into BMO(R™).
Corollary A.1. Let n > 1 and suppose u € W™ (R™) N L'(R™). Then u € BMO(R™).
Proof. From Theorem with p = 1 and Holder’s inequality, we get
|/ ~ (Warldy < Creg |/ |Dul dy
<C ( 1 D |"d>1/”
= Oor upay
| B, ()] B.(z)
1/
< C’(/ | Du|™ dy)
B, (z)
Hence, we deduce that
lellsarog = / — (W] dy < )l
:J:ER” 7“>0 |B |
[

A.3 Integration and Convergence Theorems

Let (X,.A, i) be a given measure space.
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Theorem A.25 (Lebesgue’s Montone Convergence). Let {f,} be a monotone increasing
sequence of non-negative measurable functions that converges pointwise to a function f(x),
1.e.,

(a) 0 < fi(z) < folz) < ... < fu(x) < ... < 00 for every x € X (monotone increasing),

(b) and

lim f,(x) = f(x) for every x € X (pointwise convergence).
n— oo

Then f is measurable and

/fndu—>/fdu as n — 00. (A.27)
X X

Proof. Since the pointwise limit of a sequence of non-negative measurable functions is also a
non-negative measurable function, the limiting function f : X — [0, oo] is also measurable.
Moreover, since f, < f,41 < f for all n € N, we deduce that

/fnduﬁ/fnﬂdug/fdu for all n € N.
X X X
Thus,

n—o0

lim [ f.dp < / fdu. (A.28)
b b

To obtain the reverse inequality, we choose an arbitrary 0 < a < 1 and let ¢ be any simple
function satisfying 0 < ¢ < f. Set

A, = {m € X | fu(x) > agp(m)}.

It is easy to see that A,, € A and A,, C A, for each n, and that X = U2 | A,. Under these
conditions on {A,,}>°,, it is a fairly standard exercise to prove that

v(U2 A, = lim v(A,)

n—00

for any measure v on (X, A), and it is also standard to show v(E) := [, ¢ du indeed provides
such a particular measure (actually, we will soon show in Corollary that this remains
valid if ¢ is any non-negative measurable function and not just a simple function). These
standard results imply that

/ pdu=v(X)=rUA,) = lim v(4,) = lim wdj.
X

n—oo n—oo A
n

On the other hand, by our construction of {4, }5°,, we have that

a/ sadu=/ awdué/ fndug/fndu-
n Anp An X

271



Sending n — oo in the previous inequality leads us to
a/ pdp = lim apde < lim [ f,dp. (A.29)

Recall that the integral of f is defined by

/deuzsup/xcbdu,

where the supremum is taken over all simple functions ¢ such that 0 < ¢ < f. Therefore,
since 0 < a < 1 and ¢ were chosen arbitrarily and because of ({A.29), we must have that

/fdus im [ f,dp.

Combining this with (A.28)) completes the proof of the theorem. ]

Remark A.6. The integral in 15 allowed to equal +00. Moreover, an analogue result
inwvolving non-increasing sequences of functions holds true. Namely, if there is a sequence
{fa}5, of non-negative measurable functions with fi € L'(u) and this sequence is non-
decreasing, i.e., fi(z) > folz) > ... > f(z) for all x € X, and if f,(x) — f(x) for all
x € X, then f: X — [0,00] is measurable and

lim | f,du= / fdpu.
X X

n—oo
The assumption that f € L' (i) cannot be omitted.

We recall several important applications and consequences of the Monotone Convergence
Theorem. The first is Fatou’s lemma.

Lemma A.1 (Fatou’s). If f, : X — [0, 00| is measurable for each positive integer n, then

/ (lim inf fn> dp < lim inf/ fndp.
X n—oo n—o0 X

Proof. Set g, = infy>, fr and set ¢ := liminf, ,, f,. Then g, : X — [0, 00] is measurable,
gn — g pointwise everywhere in X and {g,} is monotone increasing. By the Monotone
Convergence Theorem and the fact that f, > g, in X, for all n, we obtain

/ <lim inf fn> dp = / gdpy = lim [ g,du <lim inf/ fndpu.
O

The next is a consequence of Fatou’s lemma which we often use. For instance, it implies
that strong solutions of elliptic equations on a bounded domain satisfy the equation pointwise
almost everywhere in the domain.
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Corollary A.2. Suppose that f is a non-negative measurable function. Then f = 0 p-almost
everywhere in X if and only if

/ Fdu=0. (A.30)
X
Proof. If (A.30]) holds, let

E, = {x eX ‘ flz) > 1/n},

so that E, is measurable and f > (1/n)xg,, from which we see

1
0= [ fduz u(E) 0.
b'e n

Thus, p(E,) = 0 and so the set

{reX|f@) >0 =P

is measurable and has measure zero by the countable additive property of measures. This
verifies that f = 0 p-almost everywhere in X.
Conversely, assume f = 0 p-almost everywhere. If

E={xe X| f(x) >0},

then obviously E is measurable with u(E) = 0. Then set f, = nxg so that each f, is
non-negative and measurable, and clearly f < liminf, .., f,. Thus, by Fatou’s lemma,

0< / fdu < liminf/ fodp =liminf nu(E) = 0.
X n—oo X n—oo

Hence, || f||z1(») = 0, and this completes the proof. O

The next consequence illustrates we can use the integral of any non-negative measurable
function to construct another measure that is absolutely continuous with respect to the
original measure.

Corollary A.3. If f : X — [0, 00] is a non-negative measurable function and if X is defined
on the o-algebra A by

AE) = /E fdu. (A.31)

then X\ is a measure on the measurable space (X, A). Moreover, the measure X\ is absolutely
continuous with respect to p in the sense that if E € A and u(E) =0, then A\(E) = 0.
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Proof. We verify A defines a measure. Obviously, A\((}) = 0. Now, suppose that {FE, }>2, C A
is a sequence of disjoint measurable sets. Set E := U2 | E,, € A and define

k=1

Indeed, f,, is a non-negative measurable function and

/X u ;/X XE, Qb ; k

Then { f,} is a monotone increasing sequence of non-negative, measurable functions converg-
ing pointwise to f on X. Hence, the Monotone Convergence Theorem implies that

AE) = [ fdu=lim [ fodu= Y NE).

and therefore A defines a measure.
Assume now that F € A such that u(E) = 0. The function fyp vanishes p-almost
everywhere. So, by Corollary [A.2] we deduce that

AE) = /X fxwdu = 0.

]

Remark A.7. In general, we write A\ < p to mean X\ is absolutely continuous with respect
to . Under suitable conditions, the converse of Corollary[A.3 holds, and this result is well-
known and is referred to as the Radon-Nikodym Theorem. We state it below for completeness
but omit its proof. The proof can be found in any standard graduate real analysis textbook,
e.g., see [3, [10, 28].

Theorem A.26 (Radon-Nikodym). Let A and p be o-finite measures on (X,.A) and suppose
A K p. Then there ezists a measuable function f: X — [0, 00| such that

)\(E):/Efdu, EeA

Moreover, the function f is uniquely determined p-almost everywhere.

Remark A.8. The function f in Theorem[A.24 is called the Radon-Nikodym derivative of

A with respect to p and we write
dA

=
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We can invoke the earlier corollary to replace pointwise convergence with p-almost ev-
erywhere convergence in Theorem but the limit function is assumed to be measurable
a priori.

Corollary A.4. Let {f,} be a monotone increasing sequence of non-negative measurable
functions that converges p-almost everywhere in X to a non-negative measurable function

J d liIIl .}n d .

Proof. Choose N € A be such that u(N) = 0 and {f,} converges to f at every point of
M = X\N. Then {f,xn} converges to fx in X. Thus Theorem implies that

/ Fxardp = lim / o
X n—oo X

Since u(N) = 0, the functions fxx and f,xny vanish p-almost everywhere. It follows from

[A_30] that
/fXNduzo and /anNd,u:()'
X X

Since f = fxu + fxn and f, = fuxu + fuxw, it follows that

/fduz/foduz hm/anMdMZ hm/fndu.
]

An essential convergence theorem often utilized in our applications is Lebesgue’s Domi-
nated Convergence Theorem (LDCT). This useful result simply follows from Fatou’s lemma
and the following basic fact.

Lemma A.2. If f € L'(p), then

(/deu\s/XWu.

Proof. Set z = [, fdu € C. Thus, |z| = az for some o € C with || = 1. If u = Re(af),
then u < |af| = | f| and so

|Z|Zaz:a/xfduz/xafduz/xuduﬁ/leldu,

where we used the fact that [ o f du is real. O
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Theorem A.27 (Lebesgue’s Dominated Convergence). Suppose {f,} is a sequence of mea-
surable functions on X such that

f(z) = lim f,(z)
exists for every x € X. If there is a function g € L'(u) such that
fule) < gle) for n=1,23,.. ;z€X,
then f € L'(p),
i [ 1= Jldn =0
and
n—oo

lim frndp = / fdpu.
b's b's

Proof. Indeed, f € L'(u), since |f| < g € L*(u) and f is measurable. We similarly deduce
that f, € L'(u) for all n.

From the triangle inequality, we also get that |f, — f| < 2g, and so f, — f € L'(p).
Applying Fatou’s lemma to the non-negative functions 2g — | f,, — f]| leads us to

[ 29dn < timint [ (29 1£,~ fl)d
X n—oo X
:/2gdu+liminf<—/\fn—f]du)
X n—o0 X

=/2gdu—1imsup/ |fo — fldp.
D' n—+00 b'e

Noting that [ + 9 du is finite, we may add —2 Il + 9 du to previous inequality to arrive at

limsup/ |fo — fldu <0.
X

n—o0

This further implies that
lim / |fo — fldp = 0. (A.32)
n—oo X

Since f,, — f € L*(u), Lemma implies that
[ =] < [ 15, sl
X X
and so ([A.32) further yields that

lim | f,du= / fdpu.
X X

n—oo
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Remark A.9. In Theorem[A.27, we can easily weaken the statement and only assume that
pointwise convergence holds in the p-almost everywhere sense. This is because we can always
redefine f, and f on a set of measure zero.

More precisely, since a countable union of measurable sets of measure zero is measurable
and also has measure zero, we can find a measurable set E with u(E) = 0 and redefine { f,},
and similarly with f, so that f,(x) =0 for x € E and f,(z) remains unchanged for x ¢ E.
Note this does not change the value of the integrals fX fndu.

An immediate application of Theorem is the following

Corollary A.5. Ift — f(x,t) is continuous on |a,b] for each x € X, and if there ezists
g € LY(p) such that |f(x,t)| < g(z) for x € X, then the function F defined by

F() = [ fat)dnto) (A.33)

is continuous for each t in [a,b].

Another basic application of Theorem indicates when we may differentiate F' and
when it is equivalent to passing derivatives onto the integrand f. Hereafter, an integrable
function f on X means f is a measurable function on X belonging to L'(u).

Corollary A.6. Suppose that for some to in |a,b], the function v — f(x,to) is integrable
on X, that Of /Ot exists on X X [a,b], and that there exists an integrable function g on X
such that

‘g—{(fc,t)) < g().
Then the function F as defined in (A.33) is differentiable on [a,b] and

%(t):%/)(f(x,t)du(x) ZA%(myt)dﬂ($)~

Proof. Let t be any point of [a,b]. If {t,} is a sequence in [a, b] converging to t with t,, # t,

then 3
—f(x,t): lim f<x7tn)_f($7t)’
ot n—00 t, — 1

Therefore, the function x — (9f/0t)(x,t) is measurable.
If z € X and t € [a, b], by the mean-value theorem, there exists s; between tq and ¢ such
that
of

Flat) = f(z,to) = (¢~ to) 5 (@, 51)-

r e X.

Therefore,
|f(z,t)] < |f(2,to)] + [t —tolg(z),
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which implies that the function © — f(z,t) is integrable for each ¢ in [a, b]. Hence, if ¢, # t,

then
F(t,) — F(t) [z, t,) = f(z,1)

Since this integrand is dominated by g(x), we may apply Theorem to conclude the
desired result.

]

We can use Theorem [A.27]to establish a similar convergence result in the Lebesgue spaces
LP(p) with 1 < p < oo.

Theorem A.28. Let 1 < p < co and suppose {f.} is a sequence in LP(u) which converges
w-almost everywhere to a measurable function f. If there exists a g € LP(u) such that

[fu(2)] < g(x), € X, neN,
then f belongs to LP(u) and {f,} converges in LP(u) to f.

Proof. Assume 1 < p < oo since the case p = 1 is exactly Theorem [A.27 Obviously, the
following two properties hold for p-almost everywhere,

(@) = f(2)] < [29(x)]", and lim [fu(z) = f(2)” = 0;

and there holds [2g]P and thus ¢? belongs to L'(u). Hence, from Theorem , we get

lim / |fo — fIPdu =0,
n—oo X

and this completes the proof of the theorem.
]

Remark A.10. Lebesgue’s dominated convergence theorem and its extension provide suf-
ficient conditions that guarantee when pointwise convergence of a sequence of measurable
functions implies strong convergence in the LP norm topology;, namely, if the sequence of
functions can be compared to an LP function, then pointwise convergence implies LP conver-
gence. Conversely, LP convergence does not generally imply pointwise convergence. We give
an example below llustrating this.

Let X = [0, 1], the sigma algebra A are the Borel sets, and p is the Lebesgue measure.
Consider the ordered list of intervals

0, 11,10, 41, [2,10, 0, 31,13, 2], (2,11, 10, 2], 2, 41, 12, 2, 13, 13,0, 4], [5, 2], .. let £, be the
characteristic function of the n'* interval on this list, and let f be identically zero. If
n>m(m-+1)/2=1+24...+m, then f, is a characteristic function of an interval I whose

measure is at most 1/m. Hence,

an—inp(“):/X\fn—ﬂpdu:/xffdpdu:/andu:u(l)gl/m,
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and this shows {f,} converges in L? to f = 0.

On the other hand, if  is any point of [0, 1], then the sequence of numbers { f,(z)} has a
subsequence consisting only of 1’s and another subsequence consisting of 0’s. Therefore, the
sequence { f,} does not converge at any point of [0,1]! (although we may select a particular
subsequence of {f,} which does converge to f).

The next result swaps the domination condition in the LDCT with finite measure and
uniform integrability.

Theorem A.29 (Vitali’s Convergence Theorem). Let (X, A, u) be of finite measure, i.e.,
w(X) < +oo, and suppose the sequence {f,} is uniformly integrable over X, i.e., for ev-
ery € > 0, there exists § > 0 such that for each n, E measurable and p(E) < & implies
Sl faldie < e If {f,} converges pointwise pi-a.e. in X to f, then

n—oo

lim frndu = / fdu.
X X
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APPENDIX B

A brief introduction to smooth manifolds and Riemannian geometry

Many of the model problems and applications studied in this textbook arise from fundamental
questions from topology and geometry. These problems were chosen carefully to illustrate
how the theory of elliptic PDEs play a prominent role in their complete resolution. For
convenience and in our attempt to keep the presentation of topics in this book self-contained,
we provide some essential definitions, examples and results from smooth manifold theory and
Riemannian geometry.

B.1 Topological Manifolds; Smooth Manifolds

First, we define the notion of a topological manifold, which are, locally speaking, just like
the Euclidean spaces, and they may be viewed as the higher-dimensional analogues of curves
and surfaces in space.

Definition B.1. A topological space M is locally Euclidean of dimension n € N if every
point x € M has a neighborhood U such that there is a homeomorphism ¢ : U — R"™ from U
onto an open subset p(U) of R™. We call the pair (U, ¢) a chart, U a coordinate neighborhood
or a coordinate open set, and ¢ a coordinate map or coordinate system on U. For x € U,
we call ¢p(x) the coordinates of x. And we say (U, ) is centered at x € U if ¢p(x) = 0.

To define a topological manifold, and therefore a smooth manifold, we shall restrict
our attention to Hausdorff and second countable spaces. Recall, we say a sub-collection
B = {B,} of a topology 7 for a topological space (M, 7) is a basis for the topology 7 if given
an open set U and any point p € U, there is a B, € B. Then, we say a topological space M
is second countable if it has a countable basis. Moreover, we say a topological space M
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is Hausdorff (or 7) if for each distinct pair z,y € M, there exist disjoint open sets U, and
U, such that x € U, and y € U,,.

Definition B.2. A topological manifold M is a Hausdorff, second countable, locally
FEuclidean space. We say M is of dimension n if it is locally Fuclidean of dimension n, and
we sometimes write M™ in place of M.

The reason for restricting to Hausdorff spaces is to avoid some pathological examples,
and the second countability assumption ensures the existence of a partition of unity, a useful
tool in studying manifolds.

Definition B.3. Let M = M™ be a topological manifold of dimension n with two charts
(U, ¢) and (V,1)). We say the pair of charts is compatible if the two maps

pop L ip(UNV) —=d(UNV) andpodp™ : p(UNV) — p(UNV)

are of the class C*°. Moreover, a C* atlas, or simply an atlas, on M is a collection U =
{(Uas ®a) }aca of pairwise C°-compatible charts that cover M, i.e., M = UyeaU,.

We say a chart (V) is compatible with an atlas {(U,, ¢4)} if it is compatible with all
the charts in the atlas. In fact, it turns out that if two charts (V,4) and (W, o) are both
compatible with the atlas {(U,, ¢q)}, then they must be compatible with each other.

Definition B.4. A smooth manifold is a topological manifold M together with a maximal
atlas (by mazximal we mean it is not contained in a strictly larger C* atlas). This maximal
atlas is sometimes referred as a differentiable structure on M. A manifold is said to have di-
mension n if all of its connected components have dimension n. Specifically, a 1-dimensional
manifold is also called a curve, a 2-dimensional manifold a surface, and an n-dimensional
manifold an n-manifold.

To determine if a topological manifold M is indeed a smooth manifold, it is not necessary
to find a maximal atlas. The following proposition illustrates that it is enough to determine
the existence of any atlas on M.

Proposition B.1. Any atlas U = {(Uy, ) }aca on a locally Euclidean space is contained
m a unique mazximal atlas.

Unless otherwise stated, whenever we say manifold, it should be understood that we
always mean a smooth manifold. Perhaps, the canonical example of an n dimensional smooth
manifold is the Euclidean space itself, R", endowed with the usual inner product. Other
classical examples are the real projective space, the unit sphere, and the torus.

Example: The real projective space.

Example: The standard unit sphere.

Example: The n-torus.
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To define the notion of a diffeomorphism and when to interepret two smooth manifolds
are diffeomorphic, i.e., equivalent, we need to make precise the meaning of a differentiable
function between smooth manifolds. So, given a pair of smooth manifolds M = M™ and
N = N"let f: M — N is some mapping from M to N. Then, f is differentiable (or of
class C*) if for all charts (U, ¢) and (U, ) of M and N, respectively, such that f(U) C U,

the map

¢pofog™t:p(U) — ¢(U)
is differentiable (or of class C*) in the classical sense the respective regularity holds as a
mapping in Euclidean space. Thus, a smooth or C* mapping f : M — N is said to be a
diffeomorphism if its inverse exists and is smooth. If such a diffeomorphism exists, then
the manifolds M and N are said to be diffeomorphic.

We further define the rank R(f), of f at a point x € M as the rank of dofog ! at
¢(x) € R™, where the charts (U, ¢) and (U, $) are defined as above but with the additional
property that © € U. Now, this definition of R(f), is an intrinsic property in that it does
not depend on the choice of the charts, but this is left to the reader to check. Then, the
map [ is said to be an immersion if, for all x € M, R(f), = m = dim(M), and and it is
a submersion if for any © € M, R(f), = n = dim(N). Furthermore, it is said to be an
embedding if it is an immersion that realizes a homeomoprhism onto its image.

B.2 Tangent planes and tangent bundles

Again, we take M to be a smooth manifold and let x € M. Denote by F, to be the real
vector space of functions f : M — R that are differentiable at x. We say a f € F, is flat
at x if there exists a chart (U, ¢) at x such that D(f o ¢™!),) = 0, and we define NV, to
be the vector subspace of such functions. A linear form X on F, is said to be a tangent
vector of M at z if N, C ker(X). In other words, a linear functional X : 7, — R in the
dual space F; is a tangent vector at x if X(f) = 0 for all flat functions f € N,.

Definition B.5. The set of all tangent vectors to M at a point © € M is called the tangent
space of M at x and will be denoted by T,(M) or T,M. The tangent bundle of M,
denoted by or T(M) or TM, is defined as the disjoint union of the tangent spaces T, M over
all x € M.

Given some chart (U, ¢) of x € M, with associated coordinates z*, we define the tangent

vectors <8ixi>x e T, M by

(;I)m (f)=D(fod "y foreach fe F,.

It is a straightforward exercise to show <£> ’s form a basis for T, M.
Sz
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If M is n dimensional, then there is a natural smooth structure we can place on the
tangent bundle T'M making into a 2n-dimensional smooth manifold. More precisely, given
a chart (U, ¢) of M, one can show

( U T, @)

zeU

forms a chart of T'M, where, for X € T,M, x € U,
O(X) = (¢'(2),d%(x),...,¢"(x), X(¢"), X(¢%),..., X(¢")).

Equipped with this notion of a tangent bundle, we define a vector field on a smooth
manifold M as a mapping X : M — TM such that for any x € M, X(x) € T, M. And
since M and its tangent bundle T'M are smooth manifolds, we can make sense of vector
fields of class C*.

Definition B.6. Suppose that M and N are two smooth manifolds, v € M, and f : M — N
is differentiable at x. The differential map of f at x, denoted by f.(x), is the linear map
from T, M to Ty N such that for each tangent vector X € T,M, the differential map
evaluated at X s defined by

(f(2)(X)(g) = X(go f) forevery g: N — R differentiable at f(x).

More generally, if f is differentiable on M, the differential map of f, denoted by f, :
TM — TN, such that
f+(X) = fu(x)(X) for X € T, M.

Remark B.1. One can check that f, € C*~1 whenever f € CF; and for f : M, — M, and
g: My — Ms, and x € My, there holds (go f).(x) = g.(f(x)) o fu(x).

Similar to the construction of the tangent bundle, we define the cotangent bundle of a
smooth manifold by duality. For = € M, let T, M* be the dual space of T, M. If (U, ¢) is a
chart of M at x of associated coordinates z’, we obtain a basis for T, M* by considering dz’,
fori=1,2,...,n, where

dz ( 0 )z:(s;‘.. (B.1)

Then, the cotangent bundle of M, denoted by T*(M) or T*M, is the disjoint union of

T,.M* over all x € M. The cotangent bundle possesses a natural structure making it into a
2n-dimensional smooth manifold. Given a chart (U, ¢) of M,

( | ., <1>>

zelU

is a chart of T*M, where for n € T,M*, x € U,

o) = (60) @), .0 (5 )1 ()0 ()
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B.3 Differential Forms

In this section, suppose M is an n-dimensional smooth manifold.
For an integer ¢ > 1, a g-form or a form of degree ¢ on M is the assignment to each
x € M an alternating or skew-symmetric linear function

wy (T M) =T, M x ... T,M — R,
where by “alternating” or “skew-symmetric” we mean for each permutation o of the set
{1,2,...,q},1e,0€ S, and vy, vy, ..., v, € T, M, there holds
Wa(Vo(1)s Vo (2), - - > Vo(q)) = (8gn0)we(v1, va, ..., V).

We sometimes refer to alternating ¢-linear function on a linear space V' a g-covector on V.
So, for example, a 1-form on M is a mapping between a point z in the manifold into the
dual space T, M*.

Next, to introduce the wedge product between covectors, we recall a (p,q)-shuffle is a
permutation o € S,4, such that

ol)<o(2)<---<o(p) and op+1)<o(p+2)<---<olp+q).
Definition B.7. The wedge product of a p-covector a and q-covector 3 on a vector space
V' is the (p + q)-linear function
(@A B)(v1,va, -y Vprg) = B(5gN ) Vo(1): Vo (2), - - - s Vo)) B(Va(pt1)s Vo(pt2)s - - - » Vo(ptq))»
where the sum is taken over all (p,q)-shuffles.

So for example, if o and S are 1-covectors, then

(A B)(v1,12) = a(v1)B(ve) — a(ve)B(1r).

In addition, the wedge product o A 3 is a p + g-covector, and A as a binary operation, is
bilinear, associative, and it is anti-commutative, i.e.,

anf= (_1)deg(a)deg(6)3 A Q.

Note that a 0-covector is a constant and a 1-covector is a linear functional. And as the
collection of all g-covectors forms a natural vector space, which we denote by A,(V), we see
that Ag(V) = R and A;(R) = V*, the dual space of V. In addition, we can use a basis of the
vector space A; (V') to form a basis for A,(V'), but we pause for notation prior to stating this
result. Firstly, recall that a ¢g-tuple of integers I = (i1, s,...,4,) is called a multi-index,
and if ¢; < iy < --- <4, then we say [ is ascending. If the inequalities are all strict, then
we say [ is strictly ascending. In differential geometry, it is customary to write o as

al =a" Aa A Al

With this notation in mind, we have the following useful result.
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Proposition B.2. If a!,a?,... a" forms a basis for A;(V), then a basis for the space of
q-covectors on 'V, A (V') is given by

{0/1/\0/2/\~~/\0/q : i1<i2--~<iq<n}.

As noted earlier, given a point x € M in a coordinate chart (U, ¢) = (U, x', 2%, ... z"),
a basis for the tangent space T, M is given by

(5) () (5.

and dzl, dr?,... dz", which satisfies (B.1)) forms a dual basis for the cotangent space
T.M* = Ay(T,M). So, by Proposition , for each x € M, w, can be expressed as a
linear combination of the form

Wy = Za;(x) dYAd2 N Nde (B.2)
T

We say the ¢-form is of class C* or, respectively, smooth if M has an atlas {U,, ¢, } such
that on each U,, the coefficients, a; : U, — R in the expansion of w,, are C* or,
respectively, smooth. And when referring to a differential g-form, we mean a smooth ¢-
form on a manifold. For the most part, we will always deal with smooth differential ¢-forms
but will often drop the term “smooth” throughout.

We define a frame of differential ¢-forms on an open set U of M to be a collection

of differential ¢-forms wq,ws,...,w, on U such that, at each point x € U, the g-covectors
(W1)zs (W2)gs - -+, (wr), form a basis for the vector space A, (T, M).

Remark B.2. For ezample, on a given coordinate chart (U,¢) = (U,x', 2% ..., 2"), the
q-forms

dz' Adx A - Adats

x )

1§i1<i2<"'<iq§n,

constitute a frame of differential q-forms on U.

From the definition of the cotangent bundle, we may view a 1-form on M as a mapping
n: M — T*M such that for any x € M, n(z) € T,M*. Since M and T*M are smooth
manifolds, we can make sense of 1-forms of class C* and C*°.
For a function f of class C* on M, we define the 1-form df as follows. For x € M and
XeTl, M,
4f ()X = X(f).

Then df is a 1-form of class C*~!. For an integer 1 < ¢ < n, let A? T, M* denote the vector
space of skew-symmetric g-linear forms on T, M. Given a chart (U, ¢) of M at the point z,
of associated coordinates z’, then {dz% A da A - A dag}i <iy<. <i, is a basis of AT, M*

according to Proposition where dz’’s are defined as in (B.1)).
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We can then consider AY(M), the disjoint union of the A?T,M* over points x € M,
which naturally inherits a smooth structure and thus forms a smooth manifold via similar
constructions as above. The dimension of this smooth manifold is n + CJ, where

n!
gl(n —q)!’

Alternatively, we can denote A?T,M* and AY(M) in terms of QF(M) and Q*(M) as
follows. That is, we let QF be the vector space of differential k-forms on M, and we set

Q*(M) = P kM).

co =

n

Remark B.3. Recall that if R is a field, then an R-module is precisely a vector space over
R, and an R-module with a basis is said to be free and if the basis is finite with n elements,
then we say the free R-module has rank n. For ezample, if (U, ¢) is a coordinate chart on
M, then Q¥(U) is a free module over C=(U) of rank (7).

An algebra A is said to be graded if it can be written as a direct sum A = @, , Ax of
vector spaces Ay such that under multiplication, Ay - Ay C Agie.

Definition B.8. A mapping n : M — N\(M) is called an exterior form of degree g,
or just an exterior q-form, if for any x € M, n(z) € N T, M*.

A map n: M — AY(M) is an exterior form of degree ¢, or just an exterior ¢-form,
if for any x € M, n(z) € A?T,M*. Again, the notion of an exterior ¢g-form of class C* and
C'* make sense. To express 7 in local coordinates, consider some chart (U, ¢) of M. Then a
g-form 7 of class C* can be expressed in (U, ¢) by

n= Z nil---iquil A Adzte
11<...<ig
The exterior derivative of 7, denoted by dn, is the exterior (¢ + 1)-form of class C*~! whose

expression in (U, ¢) is given by

dn = Z dniy..ig Nz A - A date

11<...<iq

B.4 Pullback of Differential Forms

B.5 Riemannian manifolds

Definition B.9. A Riemannian metric on a smooth manifold M is a correspondence which
associates to each point x € M an inner product (, )., i.e., symmetric, bilinear, positive-
definite form, on the tangent space T,M; moreover, the assignment x +— (, ), is smooth
in the following sense: if X and Y are smooth vector fields on M, then (X,,Y,), is a C™
function on M.
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We will often drop the point z is our inner product notation. Interestingly, thanks to
our definition of a manifold and a partition of unity argument, every manifold admits a
Riemannian metric, which we call a Riemannian manifold.

Definition B.10. A Riemannian manifold is a pair (M, (,)) consisting of a manifold M
together with a Riemannian metric {, ) on M.

To be continued....
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